{"title":"IDET: Iterative Difference-Enhanced Transformers for High-Quality Change Detection","authors":"Qing Guo;Ruofei Wang;Rui Huang;Renjie Wan;Shuifa Sun;Yuxiang Zhang","doi":"10.1109/TETCI.2025.3529893","DOIUrl":null,"url":null,"abstract":"Change detection (CD) is a crucial task in various real-world applications, aiming to identify regions of change between two images captured at different times. However, existing approaches mainly focus on designing advanced network architectures that map feature differences to change maps, overlooking the impact of feature difference quality. In this paper, we approach CD from a different perspective by exploring <italic>how to optimize feature differences to effectively highlight changes and suppress background regions</i>. To achieve this, we propose a novel module called the iterative difference-enhanced transformers (IDET). IDET consists of three transformers: two for extracting long-range information from the bi-temporal images, and one for enhancing the feature difference. Unlike previous transformers, the third transformer utilizes the outputs of the first two transformers to guide iterative and dynamic enhancement of the feature difference. To further enhance refinement, we introduce the multi-scale IDET-based change detection approach, which utilizes multi-scale representations of the images to refine the feature difference at multiple scales. Additionally, we propose a coarse-to-fine fusion strategy to combine all refinements. Our final CD method surpasses nine state-of-the-art methods on six large-scale datasets across different application scenarios. This highlights the significance of feature difference enhancement and demonstrates the effectiveness of IDET. Furthermore, we demonstrate that our IDET can be seamlessly integrated into other existing CD methods, resulting in a substantial improvement in detection accuracy.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 2","pages":"1093-1106"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10856519/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Change detection (CD) is a crucial task in various real-world applications, aiming to identify regions of change between two images captured at different times. However, existing approaches mainly focus on designing advanced network architectures that map feature differences to change maps, overlooking the impact of feature difference quality. In this paper, we approach CD from a different perspective by exploring how to optimize feature differences to effectively highlight changes and suppress background regions. To achieve this, we propose a novel module called the iterative difference-enhanced transformers (IDET). IDET consists of three transformers: two for extracting long-range information from the bi-temporal images, and one for enhancing the feature difference. Unlike previous transformers, the third transformer utilizes the outputs of the first two transformers to guide iterative and dynamic enhancement of the feature difference. To further enhance refinement, we introduce the multi-scale IDET-based change detection approach, which utilizes multi-scale representations of the images to refine the feature difference at multiple scales. Additionally, we propose a coarse-to-fine fusion strategy to combine all refinements. Our final CD method surpasses nine state-of-the-art methods on six large-scale datasets across different application scenarios. This highlights the significance of feature difference enhancement and demonstrates the effectiveness of IDET. Furthermore, we demonstrate that our IDET can be seamlessly integrated into other existing CD methods, resulting in a substantial improvement in detection accuracy.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.