Contextual Regularization-Based Energy Optimization for Segmenting Breast Tumor in DCE-MRI

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Priyadharshini Babu;Mythili Asaithambi;Sudhakar Mogappair Suriyakumar
{"title":"Contextual Regularization-Based Energy Optimization for Segmenting Breast Tumor in DCE-MRI","authors":"Priyadharshini Babu;Mythili Asaithambi;Sudhakar Mogappair Suriyakumar","doi":"10.1109/ACCESS.2025.3553035","DOIUrl":null,"url":null,"abstract":"Accurate breast tumor segmentation is crucial for precise diagnosis, effective treatment planning, and the development of automated decision-support systems in clinical practice. The imprecision of trending segmentation models in differentiating tumors from their surrounding tissues, particularly in weighing the boundary pixels across tumor regions poses a significant challenge in precise tumor delineation. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) effectively captures tumor vascularity and perfusion dynamics and is a reliable modality for extracting the region of interest (ROI). Nevertheless, the intricate intensity variations in DCE-MRI owing to heterogeneous tumor morphology pose considerable challenges in tumor delineation, necessitating a highly adaptive and robust model for precise tumor segmentation. Accordingly, this manuscript presents a Contextual Regularization-Based Energy Optimization (CRBEO) model that effectively captures these intensity variations in the form of energies contributed by data fidelity and regularization terms. The formulated non-linear energy-based convex optimizer is adaptively tuned by a variational Minimax principle to achieve the desired solution. An iterative gradient descent algorithm is engaged to minimize the energy-based cost function, obtaining stable convergence towards the optimal solution. The extensive relative analysis of CRBEO on complex breast DCE-MRI datasets including QIN breast DCE-MRI, TCGA-BRCA, BreastDM, RIDER, and ISPY1 has recorded significant dice improvements of 30.16%, 11.48%, 20.66%, 1.012%, and 28.107%, respectively on par with trending SOTA methods. The complexity analysis of CRBEO with time and space has justified its extension to real-time clinical diagnosis.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"51986-52005"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10935791","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10935791/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate breast tumor segmentation is crucial for precise diagnosis, effective treatment planning, and the development of automated decision-support systems in clinical practice. The imprecision of trending segmentation models in differentiating tumors from their surrounding tissues, particularly in weighing the boundary pixels across tumor regions poses a significant challenge in precise tumor delineation. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) effectively captures tumor vascularity and perfusion dynamics and is a reliable modality for extracting the region of interest (ROI). Nevertheless, the intricate intensity variations in DCE-MRI owing to heterogeneous tumor morphology pose considerable challenges in tumor delineation, necessitating a highly adaptive and robust model for precise tumor segmentation. Accordingly, this manuscript presents a Contextual Regularization-Based Energy Optimization (CRBEO) model that effectively captures these intensity variations in the form of energies contributed by data fidelity and regularization terms. The formulated non-linear energy-based convex optimizer is adaptively tuned by a variational Minimax principle to achieve the desired solution. An iterative gradient descent algorithm is engaged to minimize the energy-based cost function, obtaining stable convergence towards the optimal solution. The extensive relative analysis of CRBEO on complex breast DCE-MRI datasets including QIN breast DCE-MRI, TCGA-BRCA, BreastDM, RIDER, and ISPY1 has recorded significant dice improvements of 30.16%, 11.48%, 20.66%, 1.012%, and 28.107%, respectively on par with trending SOTA methods. The complexity analysis of CRBEO with time and space has justified its extension to real-time clinical diagnosis.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信