Fan Li;Hang Zhou;Huafeng Li;Yafei Zhang;Zhengtao Yu
{"title":"Person Text-Image Matching via Text-Feature Interpretability Embedding and External Attack Node Implantation","authors":"Fan Li;Hang Zhou;Huafeng Li;Yafei Zhang;Zhengtao Yu","doi":"10.1109/TETCI.2024.3462817","DOIUrl":null,"url":null,"abstract":"Person text-image matching, also known as text-based person search, aims to retrieve images of specific pedestrians using text descriptions. Although person text-image matching has made great research progress, existing methods still face two challenges. First, the lack of interpretability of text features makes it challenging to effectively align them with their corresponding image features. Second, the same pedestrian image often corresponds to multiple different text descriptions, and a single text description can correspond to multiple different images of the same identity. The diversity of text descriptions and images makes it difficult for a network to extract robust features that match the two modalities. To address these problems, we propose a person text-image matching method by embedding text-feature interpretability and an external attack node. Specifically, we improve the interpretability of text features by providing them with consistent semantic information with image features to achieve the alignment of text and describe image region features. To address the challenges posed by the diversity of text and the corresponding person images, we treat the variation caused by diversity to features as caused by perturbation information and propose a novel adversarial attack and defense method to solve it. In the model design, graph convolution is used as the basic framework for feature representation and the adversarial attacks caused by text and image diversity on feature extraction is simulated by implanting an additional attack node in the graph convolution layer to improve the robustness of the model against text and image diversity. Extensive experiments demonstrate the effectiveness and superiority of text-pedestrian image matching over existing methods.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 2","pages":"1202-1215"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10701572/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Person text-image matching, also known as text-based person search, aims to retrieve images of specific pedestrians using text descriptions. Although person text-image matching has made great research progress, existing methods still face two challenges. First, the lack of interpretability of text features makes it challenging to effectively align them with their corresponding image features. Second, the same pedestrian image often corresponds to multiple different text descriptions, and a single text description can correspond to multiple different images of the same identity. The diversity of text descriptions and images makes it difficult for a network to extract robust features that match the two modalities. To address these problems, we propose a person text-image matching method by embedding text-feature interpretability and an external attack node. Specifically, we improve the interpretability of text features by providing them with consistent semantic information with image features to achieve the alignment of text and describe image region features. To address the challenges posed by the diversity of text and the corresponding person images, we treat the variation caused by diversity to features as caused by perturbation information and propose a novel adversarial attack and defense method to solve it. In the model design, graph convolution is used as the basic framework for feature representation and the adversarial attacks caused by text and image diversity on feature extraction is simulated by implanting an additional attack node in the graph convolution layer to improve the robustness of the model against text and image diversity. Extensive experiments demonstrate the effectiveness and superiority of text-pedestrian image matching over existing methods.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.