Pritam Paral;Saibal Ghosh;Sankar K. Pal;Amitava Chatterjee
{"title":"Adaptive Non-Homogeneous Granulation-Aided Density-Based Deep Feature Clustering for Far Infrared Sign Language Images","authors":"Pritam Paral;Saibal Ghosh;Sankar K. Pal;Amitava Chatterjee","doi":"10.1109/TETCI.2024.3510292","DOIUrl":null,"url":null,"abstract":"In image clustering applications, deep feature clustering has recently demonstrated impressive performance, which employs deep neural networks for feature learning that favors clustering exercises. In this context, density-based methods have emerged as the preferred choice for the clustering mechanism within the framework of deep feature clustering. However, as the performance of these clustering algorithms is primarily effective on the low-dimensional feature data, deep feature learning models play a crucial role here. With far infrared (FIR) thermal imaging systems working in real-world scenarios, the images captured are largely affected by blurred edges, background noise, thermal irregularities, few details, etc. In this work, we demonstrate the effectiveness of granular computing-based techniques in such scenarios, where the input data contains indiscernible image regions and vague boundary regions. We propose a novel adaptive non-homogeneous granulation (ANHG) technique here that can adaptively select the smallest possible size of granules within a purview of unequally-sized granulation, based on a segmentation assessment index. Proposed ANHG in combination with deep feature learning helps in extracting complex, indiscernible information from the image data and capturing the local intensity variation of the data. Experimental results show significant performance improvement of the density-based deep feature clustering method after the incorporation of the proposed granulation scheme.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 2","pages":"1269-1280"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10787397/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In image clustering applications, deep feature clustering has recently demonstrated impressive performance, which employs deep neural networks for feature learning that favors clustering exercises. In this context, density-based methods have emerged as the preferred choice for the clustering mechanism within the framework of deep feature clustering. However, as the performance of these clustering algorithms is primarily effective on the low-dimensional feature data, deep feature learning models play a crucial role here. With far infrared (FIR) thermal imaging systems working in real-world scenarios, the images captured are largely affected by blurred edges, background noise, thermal irregularities, few details, etc. In this work, we demonstrate the effectiveness of granular computing-based techniques in such scenarios, where the input data contains indiscernible image regions and vague boundary regions. We propose a novel adaptive non-homogeneous granulation (ANHG) technique here that can adaptively select the smallest possible size of granules within a purview of unequally-sized granulation, based on a segmentation assessment index. Proposed ANHG in combination with deep feature learning helps in extracting complex, indiscernible information from the image data and capturing the local intensity variation of the data. Experimental results show significant performance improvement of the density-based deep feature clustering method after the incorporation of the proposed granulation scheme.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.