DPEC: Dual-Path Error Compensation for low-light image enhancement

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shuang Wang , Qianwen Lu , Boxing Peng , Yihe Nie , Qingchuan Tao
{"title":"DPEC: Dual-Path Error Compensation for low-light image enhancement","authors":"Shuang Wang ,&nbsp;Qianwen Lu ,&nbsp;Boxing Peng ,&nbsp;Yihe Nie ,&nbsp;Qingchuan Tao","doi":"10.1016/j.neucom.2025.129980","DOIUrl":null,"url":null,"abstract":"<div><div>For the task of low-light image enhancement, deep learning-based algorithms have demonstrated superiority and effectiveness compared to traditional methods. However, these methods, primarily based on Retinex theory, tend to overlook the noise and color distortions in input images, leading to significant noise amplification and local color distortions in enhanced results. To address these issues, we propose the Dual-Path Error Compensation (DPEC) method, designed to improve image quality under low-light conditions by preserving local texture details while restoring global image brightness without amplifying noise. DPEC incorporates precise pixel-level error estimation to capture subtle differences and an independent denoising mechanism to prevent noise amplification. We introduce the HIS-Retinex loss to guide DPEC’s training, ensuring the brightness distribution of enhanced images closely aligns with real-world conditions. To balance computational speed and resource efficiency while training DPEC for a comprehensive understanding of the global context, we integrated the VMamba architecture into its backbone. Comprehensive quantitative and qualitative experimental results demonstrate that our algorithm significantly outperforms state-of-the-art methods in low-light image enhancement. The code is publicly available online at <span><span>https://github.com/wangshuang233/DPEC</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"637 ","pages":"Article 129980"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225006526","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

For the task of low-light image enhancement, deep learning-based algorithms have demonstrated superiority and effectiveness compared to traditional methods. However, these methods, primarily based on Retinex theory, tend to overlook the noise and color distortions in input images, leading to significant noise amplification and local color distortions in enhanced results. To address these issues, we propose the Dual-Path Error Compensation (DPEC) method, designed to improve image quality under low-light conditions by preserving local texture details while restoring global image brightness without amplifying noise. DPEC incorporates precise pixel-level error estimation to capture subtle differences and an independent denoising mechanism to prevent noise amplification. We introduce the HIS-Retinex loss to guide DPEC’s training, ensuring the brightness distribution of enhanced images closely aligns with real-world conditions. To balance computational speed and resource efficiency while training DPEC for a comprehensive understanding of the global context, we integrated the VMamba architecture into its backbone. Comprehensive quantitative and qualitative experimental results demonstrate that our algorithm significantly outperforms state-of-the-art methods in low-light image enhancement. The code is publicly available online at https://github.com/wangshuang233/DPEC.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信