A model-constrained discontinuous Galerkin Network (DGNet) for compressible Euler equations with out-of-distribution generalization

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Hai Van Nguyen , Jau-Uei Chen , Tan Bui-Thanh
{"title":"A model-constrained discontinuous Galerkin Network (DGNet) for compressible Euler equations with out-of-distribution generalization","authors":"Hai Van Nguyen ,&nbsp;Jau-Uei Chen ,&nbsp;Tan Bui-Thanh","doi":"10.1016/j.cma.2025.117912","DOIUrl":null,"url":null,"abstract":"<div><div>Real-time accurate solutions of large-scale complex dynamical systems are critically needed for control, optimization, uncertainty quantification, and decision-making in practical engineering and science applications, particularly in digital twin contexts. Recent research on hybrid approaches combining numerical methods and machine learning in end-to-end training has shown significant improvements over either approach alone. However, using neural networks as surrogate models generally exhibits limitations in generalizability over different settings and in capturing the evolution of solution discontinuities. In this work, we develop a model-constrained discontinuous Galerkin Network (<span>DGNet</span>) approach, a significant extension to our previous work (Nguyen and Bui-Thanh, 2022), for compressible Euler equations with out-of-distribution generalization. The core of <span>DGNet</span>is the synergy of several key strategies: (i) leveraging time integration schemes to capture temporal correlation and taking advantage of neural network speed for computation time reduction. This is the key to the temporal discretization-invariant property of <span>DGNet</span>; (ii) employing a model-constrained approach to ensure the learned tangent slope satisfies governing equations; (iii) utilizing a DG-inspired architecture for GNN where edges represent Riemann solver surrogate models and nodes represent volume integration correction surrogate models, enabling capturing discontinuity capability, aliasing error reduction, and mesh discretization generalizability. Such a design allows <span>DGNet</span>to learn the DG spatial discretization accurately; (iv) developing an input normalization strategy that allows surrogate models to generalize across different initial conditions, geometries, meshes, boundary conditions, and solution orders. In fact, the normalization is the key to spatial discretization-invariance for <span>DGNet</span>; and (v) incorporating a data randomization technique that not only implicitly promotes agreement between surrogate models and true numerical models up to second-order derivatives, ensuring long-term stability and prediction capacity, but also serves as a data generation engine during training, leading to enhanced generalization on unseen data. To validate the theoretical results, effectiveness, stability, and generalizability of our novel <span>DGNet</span>approach, we present comprehensive numerical results for 1D and 2D compressible Euler equation problems, including Sod Shock Tube, Lax Shock Tube, Isentropic Vortex, Forward Facing Step, Scramjet, Airfoil, Euler Benchmarks, Double Mach Reflection, and a Hypersonic Sphere Cone benchmark.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"440 ","pages":"Article 117912"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525001847","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Real-time accurate solutions of large-scale complex dynamical systems are critically needed for control, optimization, uncertainty quantification, and decision-making in practical engineering and science applications, particularly in digital twin contexts. Recent research on hybrid approaches combining numerical methods and machine learning in end-to-end training has shown significant improvements over either approach alone. However, using neural networks as surrogate models generally exhibits limitations in generalizability over different settings and in capturing the evolution of solution discontinuities. In this work, we develop a model-constrained discontinuous Galerkin Network (DGNet) approach, a significant extension to our previous work (Nguyen and Bui-Thanh, 2022), for compressible Euler equations with out-of-distribution generalization. The core of DGNetis the synergy of several key strategies: (i) leveraging time integration schemes to capture temporal correlation and taking advantage of neural network speed for computation time reduction. This is the key to the temporal discretization-invariant property of DGNet; (ii) employing a model-constrained approach to ensure the learned tangent slope satisfies governing equations; (iii) utilizing a DG-inspired architecture for GNN where edges represent Riemann solver surrogate models and nodes represent volume integration correction surrogate models, enabling capturing discontinuity capability, aliasing error reduction, and mesh discretization generalizability. Such a design allows DGNetto learn the DG spatial discretization accurately; (iv) developing an input normalization strategy that allows surrogate models to generalize across different initial conditions, geometries, meshes, boundary conditions, and solution orders. In fact, the normalization is the key to spatial discretization-invariance for DGNet; and (v) incorporating a data randomization technique that not only implicitly promotes agreement between surrogate models and true numerical models up to second-order derivatives, ensuring long-term stability and prediction capacity, but also serves as a data generation engine during training, leading to enhanced generalization on unseen data. To validate the theoretical results, effectiveness, stability, and generalizability of our novel DGNetapproach, we present comprehensive numerical results for 1D and 2D compressible Euler equation problems, including Sod Shock Tube, Lax Shock Tube, Isentropic Vortex, Forward Facing Step, Scramjet, Airfoil, Euler Benchmarks, Double Mach Reflection, and a Hypersonic Sphere Cone benchmark.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信