SK-PINN: Accelerated physics-informed deep learning by smoothing kernel gradients

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Cunliang Pan , Chengxuan Li , Yu Liu , Yonggang Zheng , Hongfei Ye
{"title":"SK-PINN: Accelerated physics-informed deep learning by smoothing kernel gradients","authors":"Cunliang Pan ,&nbsp;Chengxuan Li ,&nbsp;Yu Liu ,&nbsp;Yonggang Zheng ,&nbsp;Hongfei Ye","doi":"10.1016/j.cma.2025.117956","DOIUrl":null,"url":null,"abstract":"<div><div>The automatic differentiation (AD) in the vanilla physics-informed neural networks (PINNs) is the computational bottleneck for the high-efficiency analysis. The concept of derivative discretization in smoothed particle hydrodynamics (SPH) can provide an accelerated training method for PINNs. In this paper, smoothing kernel physics-informed neural networks (SK-PINNs) are established, which solve differential equations using smoothing kernel discretization. It is a robust framework capable of solving problems in the computational mechanics of complex domains. When the number of collocation points gradually increases, the training speed of SK-PINNs significantly surpasses that of vanilla PINNs. In cases involving large collocation point sets or higher-order problems, SK-PINN training can be up to tens of times faster than vanilla PINN. Additionally, analysis using neural tangent kernel (NTK) theory shows that the convergence rates of SK-PINNs are consistent with those of vanilla PINNs. The superior performance of SK-PINNs is demonstrated through various examples, including regular and complex domains, as well as forward and inverse problems in fluid dynamics and solid mechanics.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"440 ","pages":"Article 117956"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525002282","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The automatic differentiation (AD) in the vanilla physics-informed neural networks (PINNs) is the computational bottleneck for the high-efficiency analysis. The concept of derivative discretization in smoothed particle hydrodynamics (SPH) can provide an accelerated training method for PINNs. In this paper, smoothing kernel physics-informed neural networks (SK-PINNs) are established, which solve differential equations using smoothing kernel discretization. It is a robust framework capable of solving problems in the computational mechanics of complex domains. When the number of collocation points gradually increases, the training speed of SK-PINNs significantly surpasses that of vanilla PINNs. In cases involving large collocation point sets or higher-order problems, SK-PINN training can be up to tens of times faster than vanilla PINN. Additionally, analysis using neural tangent kernel (NTK) theory shows that the convergence rates of SK-PINNs are consistent with those of vanilla PINNs. The superior performance of SK-PINNs is demonstrated through various examples, including regular and complex domains, as well as forward and inverse problems in fluid dynamics and solid mechanics.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信