Cunliang Pan , Chengxuan Li , Yu Liu , Yonggang Zheng , Hongfei Ye
{"title":"SK-PINN: Accelerated physics-informed deep learning by smoothing kernel gradients","authors":"Cunliang Pan , Chengxuan Li , Yu Liu , Yonggang Zheng , Hongfei Ye","doi":"10.1016/j.cma.2025.117956","DOIUrl":null,"url":null,"abstract":"<div><div>The automatic differentiation (AD) in the vanilla physics-informed neural networks (PINNs) is the computational bottleneck for the high-efficiency analysis. The concept of derivative discretization in smoothed particle hydrodynamics (SPH) can provide an accelerated training method for PINNs. In this paper, smoothing kernel physics-informed neural networks (SK-PINNs) are established, which solve differential equations using smoothing kernel discretization. It is a robust framework capable of solving problems in the computational mechanics of complex domains. When the number of collocation points gradually increases, the training speed of SK-PINNs significantly surpasses that of vanilla PINNs. In cases involving large collocation point sets or higher-order problems, SK-PINN training can be up to tens of times faster than vanilla PINN. Additionally, analysis using neural tangent kernel (NTK) theory shows that the convergence rates of SK-PINNs are consistent with those of vanilla PINNs. The superior performance of SK-PINNs is demonstrated through various examples, including regular and complex domains, as well as forward and inverse problems in fluid dynamics and solid mechanics.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"440 ","pages":"Article 117956"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525002282","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The automatic differentiation (AD) in the vanilla physics-informed neural networks (PINNs) is the computational bottleneck for the high-efficiency analysis. The concept of derivative discretization in smoothed particle hydrodynamics (SPH) can provide an accelerated training method for PINNs. In this paper, smoothing kernel physics-informed neural networks (SK-PINNs) are established, which solve differential equations using smoothing kernel discretization. It is a robust framework capable of solving problems in the computational mechanics of complex domains. When the number of collocation points gradually increases, the training speed of SK-PINNs significantly surpasses that of vanilla PINNs. In cases involving large collocation point sets or higher-order problems, SK-PINN training can be up to tens of times faster than vanilla PINN. Additionally, analysis using neural tangent kernel (NTK) theory shows that the convergence rates of SK-PINNs are consistent with those of vanilla PINNs. The superior performance of SK-PINNs is demonstrated through various examples, including regular and complex domains, as well as forward and inverse problems in fluid dynamics and solid mechanics.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.