Dual blockade of GSTK1 and CD47 improves macrophage-mediated phagocytosis on cancer cells

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Wei-Bang Yu , Zi-Han Ye , Jia-Jie Shi , Wei-Qing Deng , Jun Chen , Jin-Jian Lu
{"title":"Dual blockade of GSTK1 and CD47 improves macrophage-mediated phagocytosis on cancer cells","authors":"Wei-Bang Yu ,&nbsp;Zi-Han Ye ,&nbsp;Jia-Jie Shi ,&nbsp;Wei-Qing Deng ,&nbsp;Jun Chen ,&nbsp;Jin-Jian Lu","doi":"10.1016/j.bcp.2025.116898","DOIUrl":null,"url":null,"abstract":"<div><div>CD47 is a crucial anti-phagocytic signal in regulating macrophage responses and its manipulation offers the therapeutic potential in cancer treatment. However, in many cases, blockade of CD47 by itself is insufficient to activate macrophage effectively, indicating other unidentified phagocytosis-regulating factors to resist the macrophage activity. In this study, a genome-wide human CRISPR-Cas9 library was developed for comprehensive screening of phagocytosis-regulating factors in the context of CD47 blockade. The screening results identified GSTK1 as a potential anti-phagocytic signal counteracting the efficacy of CD47-based phagocytosis. The disruption of GSTK1 significantly increased the phagocytosis rate of cancer cells by macrophages in combination with anti-CD47 antibody. Further mechanism investigation unveiled that GSTK1 blockade increased the membrane exposure of calreticulin in different cancer cells, which might be the primary mechanism driving enhanced macrophage-mediated phagocytosis. To this end, si<em>GSTK1</em>-loaded nanoparticles (si<em>GSTK1</em>-LNPs) were designed to suppress the GSTK1 expression efficiently. The comparable phagocytosis efficacy was also observed when combining si<em>GSTK1</em>-LNPs with anti-CD47 antibody. Above all, GSTK1 blockade was identified as a promising and feasible stimulus for enhancing the effectiveness of anti-CD47 antibody, introducing a novel and effective combination approach in cancer immunotherapy.</div></div>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":"236 ","pages":"Article 116898"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006295225001601","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

CD47 is a crucial anti-phagocytic signal in regulating macrophage responses and its manipulation offers the therapeutic potential in cancer treatment. However, in many cases, blockade of CD47 by itself is insufficient to activate macrophage effectively, indicating other unidentified phagocytosis-regulating factors to resist the macrophage activity. In this study, a genome-wide human CRISPR-Cas9 library was developed for comprehensive screening of phagocytosis-regulating factors in the context of CD47 blockade. The screening results identified GSTK1 as a potential anti-phagocytic signal counteracting the efficacy of CD47-based phagocytosis. The disruption of GSTK1 significantly increased the phagocytosis rate of cancer cells by macrophages in combination with anti-CD47 antibody. Further mechanism investigation unveiled that GSTK1 blockade increased the membrane exposure of calreticulin in different cancer cells, which might be the primary mechanism driving enhanced macrophage-mediated phagocytosis. To this end, siGSTK1-loaded nanoparticles (siGSTK1-LNPs) were designed to suppress the GSTK1 expression efficiently. The comparable phagocytosis efficacy was also observed when combining siGSTK1-LNPs with anti-CD47 antibody. Above all, GSTK1 blockade was identified as a promising and feasible stimulus for enhancing the effectiveness of anti-CD47 antibody, introducing a novel and effective combination approach in cancer immunotherapy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical pharmacology
Biochemical pharmacology 医学-药学
CiteScore
10.30
自引率
1.70%
发文量
420
审稿时长
17 days
期刊介绍: Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics. The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process. All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review. While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信