Integrated framework of fragment-based method and generative model for lead drug molecules discovery

Uche A.K. Chude-Okonkwo, Odifentse Lehasa
{"title":"Integrated framework of fragment-based method and generative model for lead drug molecules discovery","authors":"Uche A.K. Chude-Okonkwo,&nbsp;Odifentse Lehasa","doi":"10.1016/j.iswa.2025.200508","DOIUrl":null,"url":null,"abstract":"<div><div>Generative models have proven valuable in generating novel lead molecules with drug-like properties. However, beyond generating drug-like molecules, the generative model should also be able to create drug molecules with structural properties and pharmacophores to modulate a specific disease. The molecular generation process should also address the multi-objective optimization challenge of producing molecules with the desired efficacy and minimal side effects. This may entail the generation of a diverse pool of molecules with the desired structural properties and pharmacophore, which would offer diverse options and paths to developing potential new drug candidates by prioritizing molecules that balance the desired properties that can cater to the needs of different individuals. Achieving this requires a generative model learning a large dataset of molecular instances with the desired chemical/structural properties. However, large sets of drug molecules are not readily available for many diseases as there are few known drug molecular instances for treating any disease. To address this challenge, this paper presents an <em>in silico</em> molecular generative framework aided by fragment-based molecules’ synthesis for generating a pool of lead molecular instances possessing structural properties and pharmacophores to treat a disease of interest. The operation of the framework is explored using Hypertension as the disease of interest and beta-blocker as the reference hypertension drug to be generated. We generated over 123 beta-blocker-like molecules and further virtual-screened them for drug-likeness, docking probability, scaffold diversity, electrostatic complementarity, and synthesis accessibility to arrive at the final lead beta-blocker-like molecules.</div></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"26 ","pages":"Article 200508"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305325000341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generative models have proven valuable in generating novel lead molecules with drug-like properties. However, beyond generating drug-like molecules, the generative model should also be able to create drug molecules with structural properties and pharmacophores to modulate a specific disease. The molecular generation process should also address the multi-objective optimization challenge of producing molecules with the desired efficacy and minimal side effects. This may entail the generation of a diverse pool of molecules with the desired structural properties and pharmacophore, which would offer diverse options and paths to developing potential new drug candidates by prioritizing molecules that balance the desired properties that can cater to the needs of different individuals. Achieving this requires a generative model learning a large dataset of molecular instances with the desired chemical/structural properties. However, large sets of drug molecules are not readily available for many diseases as there are few known drug molecular instances for treating any disease. To address this challenge, this paper presents an in silico molecular generative framework aided by fragment-based molecules’ synthesis for generating a pool of lead molecular instances possessing structural properties and pharmacophores to treat a disease of interest. The operation of the framework is explored using Hypertension as the disease of interest and beta-blocker as the reference hypertension drug to be generated. We generated over 123 beta-blocker-like molecules and further virtual-screened them for drug-likeness, docking probability, scaffold diversity, electrostatic complementarity, and synthesis accessibility to arrive at the final lead beta-blocker-like molecules.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信