A system dynamics approach for leveraging blockchain technology to enhance demand forecasting in supply chain management

SeyyedHossein Barati
{"title":"A system dynamics approach for leveraging blockchain technology to enhance demand forecasting in supply chain management","authors":"SeyyedHossein Barati","doi":"10.1016/j.sca.2025.100115","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the impact of blockchain technology on demand forecasting and the associated costs in supply chain management using system dynamics modeling. With the increasing complexity and challenges of demand prediction in modern supply chains, the potential of blockchain to enhance the accuracy of demand forecasting and reduce related costs has become a critical area of interest. The research employs system dynamics to model the interrelationships between key factors such as blockchain adoption, data accuracy, transaction transparency, and supply chain performance. The findings highlight that blockchain integration significantly improves demand forecasting accuracy by ensuring real-time data sharing, reducing information asymmetry, and enhancing decision-making processes. Moreover, the simulation results show that blockchain adoption can reduce forecasting errors, thereby lowering operational costs. This research contributes to the existing literature by demonstrating the practical benefits of blockchain in supply chain operations, offering valuable insights for practitioners and researchers. It also provides a foundation for future studies to explore the scalability of blockchain in different sectors and its broader applications in optimizing supply chain functions.</div></div>","PeriodicalId":101186,"journal":{"name":"Supply Chain Analytics","volume":"10 ","pages":"Article 100115"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supply Chain Analytics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949863525000159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the impact of blockchain technology on demand forecasting and the associated costs in supply chain management using system dynamics modeling. With the increasing complexity and challenges of demand prediction in modern supply chains, the potential of blockchain to enhance the accuracy of demand forecasting and reduce related costs has become a critical area of interest. The research employs system dynamics to model the interrelationships between key factors such as blockchain adoption, data accuracy, transaction transparency, and supply chain performance. The findings highlight that blockchain integration significantly improves demand forecasting accuracy by ensuring real-time data sharing, reducing information asymmetry, and enhancing decision-making processes. Moreover, the simulation results show that blockchain adoption can reduce forecasting errors, thereby lowering operational costs. This research contributes to the existing literature by demonstrating the practical benefits of blockchain in supply chain operations, offering valuable insights for practitioners and researchers. It also provides a foundation for future studies to explore the scalability of blockchain in different sectors and its broader applications in optimizing supply chain functions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信