Roger Chiu-Coutino , Miguel S. Soriano-Garcia , Carlos Israel Medel-Ruiz , S.M. Afanador-Delgado , Edgar Villafaña-Rauda , Roger Chiu
{"title":"Breaking through scattering: The H-Net CNN model for image retrieval","authors":"Roger Chiu-Coutino , Miguel S. Soriano-Garcia , Carlos Israel Medel-Ruiz , S.M. Afanador-Delgado , Edgar Villafaña-Rauda , Roger Chiu","doi":"10.1016/j.cmpb.2025.108723","DOIUrl":null,"url":null,"abstract":"<div><h3>Background:</h3><div>In scattering media, traditional optical imaging techniques often find it significantly challenging to accurately reconstruct images owing to rapid light scattering. Thus, to address this problem, we propose a convolutional neural network architecture called H-Net, which is specifically designed to recover structural information from images distorted by scattering media.</div></div><div><h3>Method:</h3><div>Our approach involves the use of dilated convolutions to capture local and global features of the distorted images, allowing for the effective reconstruction of the underlying structures. First, we developed a diffuse image dataset by projecting handwritten numbers through diffusers with different thicknesses, capturing the resulting distorted images. Second, we generated a synthetic speckle images dataset, composed of simulated speckle patterns. These datasets were designed to train the model to recover structures within scattering media. To evaluate the model’s performance, we calculated the Structural Similarity Measure Index between the model’s predictions and the original images on unseen data.</div></div><div><h3>Result:</h3><div>This proposed architecture achieves reconstructions with an average structural similarity index measure of 0.8 while maintaining low computational costs.</div></div><div><h3>Conclusion:</h3><div>The results of this study indicate that H-Net offers an alternative to more complex and computationally expensive models, providing efficient and reliable image reconstruction in scattering media.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"265 ","pages":"Article 108723"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260725001403","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Background:
In scattering media, traditional optical imaging techniques often find it significantly challenging to accurately reconstruct images owing to rapid light scattering. Thus, to address this problem, we propose a convolutional neural network architecture called H-Net, which is specifically designed to recover structural information from images distorted by scattering media.
Method:
Our approach involves the use of dilated convolutions to capture local and global features of the distorted images, allowing for the effective reconstruction of the underlying structures. First, we developed a diffuse image dataset by projecting handwritten numbers through diffusers with different thicknesses, capturing the resulting distorted images. Second, we generated a synthetic speckle images dataset, composed of simulated speckle patterns. These datasets were designed to train the model to recover structures within scattering media. To evaluate the model’s performance, we calculated the Structural Similarity Measure Index between the model’s predictions and the original images on unseen data.
Result:
This proposed architecture achieves reconstructions with an average structural similarity index measure of 0.8 while maintaining low computational costs.
Conclusion:
The results of this study indicate that H-Net offers an alternative to more complex and computationally expensive models, providing efficient and reliable image reconstruction in scattering media.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.