Gabrielle Thivierge , Aaron Rumack , F. William Townes
{"title":"Does spatial information improve forecasting of influenza-like illness?","authors":"Gabrielle Thivierge , Aaron Rumack , F. William Townes","doi":"10.1016/j.epidem.2025.100820","DOIUrl":null,"url":null,"abstract":"<div><div>Seasonal influenza forecasting is critical for public health and individual decision making. We investigate whether the inclusion of data about influenza activity in neighboring states can improve point predictions and distribution forecasting of influenza-like illness (ILI) in each US state using statistical regression models. Using CDC FluView ILI data from 2010–2019, we forecast weekly ILI in each US state with quantile, linear, and Poisson autoregressive models fit using different combinations of ILI data from the target state, neighboring states, and the US population-weighted average. Scoring with root mean squared error and weighted interval score indicated that the covariate sets including neighbors and/or the US weighted average ILI showed slightly higher accuracy than models fit only using lagged ILI in the target state, on average. Additionally, the improvement in performance when including neighbors was similar to the improvement when including the US average instead, suggesting the proximity of the neighboring states is not the driver of the slight increase in accuracy. There is also clear within-season and between-season variability in the effect of spatial information on prediction accuracy.</div></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"51 ","pages":"Article 100820"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755436525000088","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Seasonal influenza forecasting is critical for public health and individual decision making. We investigate whether the inclusion of data about influenza activity in neighboring states can improve point predictions and distribution forecasting of influenza-like illness (ILI) in each US state using statistical regression models. Using CDC FluView ILI data from 2010–2019, we forecast weekly ILI in each US state with quantile, linear, and Poisson autoregressive models fit using different combinations of ILI data from the target state, neighboring states, and the US population-weighted average. Scoring with root mean squared error and weighted interval score indicated that the covariate sets including neighbors and/or the US weighted average ILI showed slightly higher accuracy than models fit only using lagged ILI in the target state, on average. Additionally, the improvement in performance when including neighbors was similar to the improvement when including the US average instead, suggesting the proximity of the neighboring states is not the driver of the slight increase in accuracy. There is also clear within-season and between-season variability in the effect of spatial information on prediction accuracy.
期刊介绍:
Epidemics publishes papers on infectious disease dynamics in the broadest sense. Its scope covers both within-host dynamics of infectious agents and dynamics at the population level, particularly the interaction between the two. Areas of emphasis include: spread, transmission, persistence, implications and population dynamics of infectious diseases; population and public health as well as policy aspects of control and prevention; dynamics at the individual level; interaction with the environment, ecology and evolution of infectious diseases, as well as population genetics of infectious agents.