Yichen Lou , Yuqing Ma , Liming Xiang , Jianguo Sun
{"title":"A multiple imputation approach for flexible modelling of interval-censored data with missing and censored covariates","authors":"Yichen Lou , Yuqing Ma , Liming Xiang , Jianguo Sun","doi":"10.1016/j.csda.2025.108177","DOIUrl":null,"url":null,"abstract":"<div><div>This paper discusses regression analysis of interval-censored failure time data that commonly occur in biomedical studies among others. For the situation, the failure event of interest is known only to occur within an interval instead of being observed exactly. In addition to interval censoring on the failure time of interest, sometimes covariates may be missing or suffer censoring, which can bring extra theoretical and computational challenges for the regression analysis. To deal with such data, we propose a novel multiple imputation approach with the use of the rejection sampling under a class of semiparametric transformation models. The proposed method is flexible and can lead to more efficient estimation than the existing methods, and the resulting estimators are shown to be consistent and asymptotically normal. An extensive simulation study is conducted and demonstrates that the proposed approach works well in practice. Finally, we apply the proposed approach to a set of real data on Alzheimer's disease that motivated this study.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"209 ","pages":"Article 108177"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325000532","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper discusses regression analysis of interval-censored failure time data that commonly occur in biomedical studies among others. For the situation, the failure event of interest is known only to occur within an interval instead of being observed exactly. In addition to interval censoring on the failure time of interest, sometimes covariates may be missing or suffer censoring, which can bring extra theoretical and computational challenges for the regression analysis. To deal with such data, we propose a novel multiple imputation approach with the use of the rejection sampling under a class of semiparametric transformation models. The proposed method is flexible and can lead to more efficient estimation than the existing methods, and the resulting estimators are shown to be consistent and asymptotically normal. An extensive simulation study is conducted and demonstrates that the proposed approach works well in practice. Finally, we apply the proposed approach to a set of real data on Alzheimer's disease that motivated this study.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]