Transport of DNA repair proteins to the cell nucleus by the classical nuclear importin pathway – a structural overview

IF 3 3区 生物学 Q2 GENETICS & HEREDITY
Marcos R.M. Fontes , Fábio F. Cardoso , Bostjan Kobe
{"title":"Transport of DNA repair proteins to the cell nucleus by the classical nuclear importin pathway – a structural overview","authors":"Marcos R.M. Fontes ,&nbsp;Fábio F. Cardoso ,&nbsp;Bostjan Kobe","doi":"10.1016/j.dnarep.2025.103828","DOIUrl":null,"url":null,"abstract":"<div><div>DNA repair is a crucial biological process necessary to address damage caused by both endogenous and exogenous agents, with at least five major pathways recognized as central to this process. In several cancer types and other diseases, including neurodegenerative disorders, DNA repair mechanisms are often disrupted or dysregulated. Despite the diversity of these proteins and their roles, they all share the common requirement of being imported into the cell nucleus to perform their functions. Therefore, understanding the nuclear import of these proteins is essential for comprehending their roles in cellular processes. The first and best-characterized nuclear targeting signal is the classical nuclear localization sequence (NLS), recognized by importin-α (Impα). Several structural and affinity studies have been conducted on complexes formed between Impα and NLSs from DNA repair proteins, although these represent only a fraction of all known DNA repair proteins. These studies have significantly advanced our understanding of the nuclear import process of DNA repair proteins, often revealing unexpected results that challenge existing literature and computational predictions. Despite advances in computational, biochemical, and cellular assays, structural methods – particularly crystallography and in-solution biophysical approaches – continue to play a critical role in providing insights into molecular events operating in biological pathways. In this review, we aim to summarize experimental structural and affinity studies involving Impα and NLSs from DNA repair proteins, with the goal of furthering our understanding of the function of these essential proteins.</div></div>","PeriodicalId":300,"journal":{"name":"DNA Repair","volume":"149 ","pages":"Article 103828"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Repair","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568786425000242","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

DNA repair is a crucial biological process necessary to address damage caused by both endogenous and exogenous agents, with at least five major pathways recognized as central to this process. In several cancer types and other diseases, including neurodegenerative disorders, DNA repair mechanisms are often disrupted or dysregulated. Despite the diversity of these proteins and their roles, they all share the common requirement of being imported into the cell nucleus to perform their functions. Therefore, understanding the nuclear import of these proteins is essential for comprehending their roles in cellular processes. The first and best-characterized nuclear targeting signal is the classical nuclear localization sequence (NLS), recognized by importin-α (Impα). Several structural and affinity studies have been conducted on complexes formed between Impα and NLSs from DNA repair proteins, although these represent only a fraction of all known DNA repair proteins. These studies have significantly advanced our understanding of the nuclear import process of DNA repair proteins, often revealing unexpected results that challenge existing literature and computational predictions. Despite advances in computational, biochemical, and cellular assays, structural methods – particularly crystallography and in-solution biophysical approaches – continue to play a critical role in providing insights into molecular events operating in biological pathways. In this review, we aim to summarize experimental structural and affinity studies involving Impα and NLSs from DNA repair proteins, with the goal of furthering our understanding of the function of these essential proteins.
DNA修复蛋白转运到细胞核的经典核输入蛋白途径-结构概述
DNA修复是解决内源性和外源性因素造成的损伤所必需的关键生物学过程,至少有五个主要途径被认为是这一过程的核心。在一些癌症类型和其他疾病中,包括神经退行性疾病,DNA修复机制经常被破坏或失调。尽管这些蛋白质及其作用各不相同,但它们都有一个共同的要求,即被输入细胞核以发挥其功能。因此,了解这些蛋白质的核输入对于理解它们在细胞过程中的作用至关重要。第一个也是表征最好的核靶向信号是由输入蛋白α (Impα)识别的经典核定位序列(NLS)。虽然这些复合物只占所有已知DNA修复蛋白的一小部分,但已经对DNA修复蛋白中Impα和nls之间形成的复合物进行了一些结构和亲和力研究。这些研究大大提高了我们对DNA修复蛋白的核输入过程的理解,经常揭示出挑战现有文献和计算预测的意想不到的结果。尽管在计算、生化和细胞分析方面取得了进步,但结构方法——特别是晶体学和溶液内生物物理方法——在提供对生物途径中运作的分子事件的见解方面继续发挥着关键作用。在这篇综述中,我们旨在总结DNA修复蛋白中涉及Impα和NLSs的实验结构和亲和力研究,以进一步了解这些必需蛋白的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
DNA Repair
DNA Repair 生物-毒理学
CiteScore
7.60
自引率
5.30%
发文量
91
审稿时长
59 days
期刊介绍: DNA Repair provides a forum for the comprehensive coverage of DNA repair and cellular responses to DNA damage. The journal publishes original observations on genetic, cellular, biochemical, structural and molecular aspects of DNA repair, mutagenesis, cell cycle regulation, apoptosis and other biological responses in cells exposed to genomic insult, as well as their relationship to human disease. DNA Repair publishes full-length research articles, brief reports on research, and reviews. The journal welcomes articles describing databases, methods and new technologies supporting research on DNA repair and responses to DNA damage. Letters to the Editor, hot topics and classics in DNA repair, historical reflections, book reviews and meeting reports also will be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信