Pt nanoparticles for improving the performance and durability of Fe-N-C based materials towards oxygen reduction reaction in alkaline direct methanol fuel cells

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
G. Alemany-Molina , C. Lo Vecchio , V. Baglio , A.S. Aricò , E. Morallón , D. Cazorla-Amorós
{"title":"Pt nanoparticles for improving the performance and durability of Fe-N-C based materials towards oxygen reduction reaction in alkaline direct methanol fuel cells","authors":"G. Alemany-Molina ,&nbsp;C. Lo Vecchio ,&nbsp;V. Baglio ,&nbsp;A.S. Aricò ,&nbsp;E. Morallón ,&nbsp;D. Cazorla-Amorós","doi":"10.1016/j.jcis.2025.137426","DOIUrl":null,"url":null,"abstract":"<div><div>Pt-alloy nanoparticles have been reported to enhance the oxygen reduction reaction (ORR) durability and boost Pt methanol tolerance. In this work, we have studied two different Pt-Fe-N-C based materials, where one of the carbon materials is derived from a biomass residue (almond shell), prepared by standard impregnation and NaBH<sub>4</sub> reduction or one-pot high-temperature treatment. The materials were characterized in terms of methanol tolerance, accelerated durability tests, power density in membrane electrode assembly (MEA) configuration, and stability (100 h). The results showed that, although the particle size distribution obtained for the one-pot synthesis was wider, an effective modification of the Pt structure was observed, which was translated into a higher methanol tolerance. When a small amount of platinum was incorporated in the biomass-derived Fe-N-C catalysts, and tested for the first time (to the best of our knowledge) in alkaline direct methanol fuel cell (ADMFC), significant improvement in durability under ORR conditions was achieved, which finally resulted in superior performance in MEA configuration.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"691 ","pages":"Article 137426"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725008173","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Pt-alloy nanoparticles have been reported to enhance the oxygen reduction reaction (ORR) durability and boost Pt methanol tolerance. In this work, we have studied two different Pt-Fe-N-C based materials, where one of the carbon materials is derived from a biomass residue (almond shell), prepared by standard impregnation and NaBH4 reduction or one-pot high-temperature treatment. The materials were characterized in terms of methanol tolerance, accelerated durability tests, power density in membrane electrode assembly (MEA) configuration, and stability (100 h). The results showed that, although the particle size distribution obtained for the one-pot synthesis was wider, an effective modification of the Pt structure was observed, which was translated into a higher methanol tolerance. When a small amount of platinum was incorporated in the biomass-derived Fe-N-C catalysts, and tested for the first time (to the best of our knowledge) in alkaline direct methanol fuel cell (ADMFC), significant improvement in durability under ORR conditions was achieved, which finally resulted in superior performance in MEA configuration.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信