Enhancing visual speech perception through deep automatic lipreading: A systematic review

IF 7 2区 医学 Q1 BIOLOGY
Griffani Megiyanto Rahmatullah , Shanq-Jang Ruan , I. Wayan Wiprayoga Wisesa , Lieber Po-Hung Li
{"title":"Enhancing visual speech perception through deep automatic lipreading: A systematic review","authors":"Griffani Megiyanto Rahmatullah ,&nbsp;Shanq-Jang Ruan ,&nbsp;I. Wayan Wiprayoga Wisesa ,&nbsp;Lieber Po-Hung Li","doi":"10.1016/j.compbiomed.2025.110019","DOIUrl":null,"url":null,"abstract":"<div><div>Communication involves exchanging information between individuals or groups through various media sources. However, limitations such as hearing loss can make it difficult for some individuals to understand the information delivered during speech communication. Conventional methods, including sign language, written text, and manual lipreading, offer some solutions; however, emerging software-based tools using artificial intelligence (AI) are introducing more effective approaches. Many approaches rely on AI to improve communication quality, with the current trend of leveraging deep learning being a particularly effective tool. This paper presents a comprehensive Systematic Literature Review (SLR) of research trends in automatic lipreading technologies, a critical field in enhancing communication among individuals with hearing impairments. The SLR, which followed the Preferred Reporting Items for Systematic Literature Review and Meta-Analysis (PRISMA) protocol, identified 114 original research articles published between 2014 and mid-2024. The essential information from these articles was summarized, including the trends in automatic lipreading research, dataset availability, task categories, existing approaches, and architectures for automatic lipreading systems. The results showed that various techniques and advanced deep learning models achieved convincing performance to become state-of-the-art in automatic lipreading tasks. However, several challenges, such as insufficient data quantity, inadequate environmental conditions, and language diversity, must be resolved in the future. Furthermore, many improvements have been made to the deep learning models to overcome these challenges and become a massive solution, particularly for automatic lipreading tasks in the near future.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"190 ","pages":"Article 110019"},"PeriodicalIF":7.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525003701","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Communication involves exchanging information between individuals or groups through various media sources. However, limitations such as hearing loss can make it difficult for some individuals to understand the information delivered during speech communication. Conventional methods, including sign language, written text, and manual lipreading, offer some solutions; however, emerging software-based tools using artificial intelligence (AI) are introducing more effective approaches. Many approaches rely on AI to improve communication quality, with the current trend of leveraging deep learning being a particularly effective tool. This paper presents a comprehensive Systematic Literature Review (SLR) of research trends in automatic lipreading technologies, a critical field in enhancing communication among individuals with hearing impairments. The SLR, which followed the Preferred Reporting Items for Systematic Literature Review and Meta-Analysis (PRISMA) protocol, identified 114 original research articles published between 2014 and mid-2024. The essential information from these articles was summarized, including the trends in automatic lipreading research, dataset availability, task categories, existing approaches, and architectures for automatic lipreading systems. The results showed that various techniques and advanced deep learning models achieved convincing performance to become state-of-the-art in automatic lipreading tasks. However, several challenges, such as insufficient data quantity, inadequate environmental conditions, and language diversity, must be resolved in the future. Furthermore, many improvements have been made to the deep learning models to overcome these challenges and become a massive solution, particularly for automatic lipreading tasks in the near future.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信