{"title":"FusionLungNet: Multi-scale fusion convolution with refinement network for lung CT image segmentation","authors":"Sadjad Rezvani , Mansoor Fateh , Yeganeh Jalali , Amirreza Fateh","doi":"10.1016/j.bspc.2025.107858","DOIUrl":null,"url":null,"abstract":"<div><div>Early detection of lung cancer is crucial as it increases the chances of successful treatment. Automatic lung image segmentation assists doctors in identifying diseases such as lung cancer, COVID-19, and respiratory disorders. However, lung segmentation is challenging due to overlapping features like vascular and bronchial structures, along with pixel-level fusion of brightness, color, and texture. New lung segmentation methods face difficulties in identifying long-range relationships between image components, reliance on convolution operations that may not capture all critical features, and the complex structures of the lungs. Furthermore, semantic gaps between feature maps can hinder the integration of relevant information, reducing model accuracy. Skip connections can also limit the decoder’s access to complete information, resulting in partial information loss during encoding. To overcome these challenges, we propose a hybrid approach using the FusionLungNet network, which has a multi-level structure with key components, including the ResNet-50 encoder, Channel-wise Aggregation Attention (CAA) module, Multi-scale Feature Fusion (MFF) block, self refinement (SR) module, and multiple decoders. The refinement sub-network uses convolutional neural networks for image post-processing to improve quality. Our method employs a combination of loss functions, including SSIM, IOU, and focal loss, to optimize image reconstruction quality. We created and publicly released a new dataset for lung segmentation called LungSegDB, including 1800 CT images from the LIDC-IDRI dataset (dataset version 1) and 700 images from the Chest CT Cancer Images from Kaggle dataset (dataset version 2). Our method achieved an IOU score of 98.04, outperforming existing methods and demonstrating significant improvements in segmentation accuracy. Both the dataset and code are publicly available (<span><span>Dataset link</span><svg><path></path></svg></span>, <span><span>Code link</span><svg><path></path></svg></span>).</div></div>","PeriodicalId":55362,"journal":{"name":"Biomedical Signal Processing and Control","volume":"107 ","pages":"Article 107858"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Signal Processing and Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1746809425003696","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Early detection of lung cancer is crucial as it increases the chances of successful treatment. Automatic lung image segmentation assists doctors in identifying diseases such as lung cancer, COVID-19, and respiratory disorders. However, lung segmentation is challenging due to overlapping features like vascular and bronchial structures, along with pixel-level fusion of brightness, color, and texture. New lung segmentation methods face difficulties in identifying long-range relationships between image components, reliance on convolution operations that may not capture all critical features, and the complex structures of the lungs. Furthermore, semantic gaps between feature maps can hinder the integration of relevant information, reducing model accuracy. Skip connections can also limit the decoder’s access to complete information, resulting in partial information loss during encoding. To overcome these challenges, we propose a hybrid approach using the FusionLungNet network, which has a multi-level structure with key components, including the ResNet-50 encoder, Channel-wise Aggregation Attention (CAA) module, Multi-scale Feature Fusion (MFF) block, self refinement (SR) module, and multiple decoders. The refinement sub-network uses convolutional neural networks for image post-processing to improve quality. Our method employs a combination of loss functions, including SSIM, IOU, and focal loss, to optimize image reconstruction quality. We created and publicly released a new dataset for lung segmentation called LungSegDB, including 1800 CT images from the LIDC-IDRI dataset (dataset version 1) and 700 images from the Chest CT Cancer Images from Kaggle dataset (dataset version 2). Our method achieved an IOU score of 98.04, outperforming existing methods and demonstrating significant improvements in segmentation accuracy. Both the dataset and code are publicly available (Dataset link, Code link).
期刊介绍:
Biomedical Signal Processing and Control aims to provide a cross-disciplinary international forum for the interchange of information on research in the measurement and analysis of signals and images in clinical medicine and the biological sciences. Emphasis is placed on contributions dealing with the practical, applications-led research on the use of methods and devices in clinical diagnosis, patient monitoring and management.
Biomedical Signal Processing and Control reflects the main areas in which these methods are being used and developed at the interface of both engineering and clinical science. The scope of the journal is defined to include relevant review papers, technical notes, short communications and letters. Tutorial papers and special issues will also be published.