Shanfan Lin, Hua Li, Peng Tian, Yingxu Wei, Mao Ye, Zhongmin Liu
{"title":"Methanol to Olefins (MTO): Understanding and Regulating Dynamic Complex Catalysis","authors":"Shanfan Lin, Hua Li, Peng Tian, Yingxu Wei, Mao Ye, Zhongmin Liu","doi":"10.1021/jacs.4c12145","DOIUrl":null,"url":null,"abstract":"The research and development of methanol conversion into hydrocarbons have spanned more than 40 years. The past four decades have witnessed mutual promotion and successive breakthroughs in both fundamental research and industrial process development of methanol to olefins (MTO), demonstrating that MTO is an extremely dynamic, complex catalytic system. This Perspective summarizes the endeavors and achievements of the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, in the continuous study of reaction mechanisms and process engineering of the dynamic, complex MTO reaction system. It elucidates fundamental chemical issues concerning the essence of the dynamic evolution of the MTO reaction and the cross-talk mechanisms among diffusion, reaction, and catalyst (coke modification), which are crucial for technology development and process optimization. By integrating the chemical principles, the reaction-diffusion model, and coke formation kinetics of MTO, a mechanism- and model-driven modulation of industrial processes has been achieved. The acquisition of a deepening understanding in chemistry and engineering has facilitated the continuous optimization and upgrading of MTO catalysts and processes.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"19 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c12145","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The research and development of methanol conversion into hydrocarbons have spanned more than 40 years. The past four decades have witnessed mutual promotion and successive breakthroughs in both fundamental research and industrial process development of methanol to olefins (MTO), demonstrating that MTO is an extremely dynamic, complex catalytic system. This Perspective summarizes the endeavors and achievements of the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, in the continuous study of reaction mechanisms and process engineering of the dynamic, complex MTO reaction system. It elucidates fundamental chemical issues concerning the essence of the dynamic evolution of the MTO reaction and the cross-talk mechanisms among diffusion, reaction, and catalyst (coke modification), which are crucial for technology development and process optimization. By integrating the chemical principles, the reaction-diffusion model, and coke formation kinetics of MTO, a mechanism- and model-driven modulation of industrial processes has been achieved. The acquisition of a deepening understanding in chemistry and engineering has facilitated the continuous optimization and upgrading of MTO catalysts and processes.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.