{"title":"Spatial transcriptomic imaging of an intact organism using volumetric DNA microscopy","authors":"Nianchao Qian, Joshua A. Weinstein","doi":"10.1038/s41587-025-02613-z","DOIUrl":null,"url":null,"abstract":"<p>Lymphatic, nervous and tumor tissues exhibit complex physiology arising from three-dimensional interactions within genetically unique microenvironments. Here we develop a technology capable of volumetrically imaging transcriptomes, genotypes and morphologies in a single measurement, without relying on prior knowledge of spatial organization or genetic sequences. Our method extends DNA microscopy into three dimensions at scales involving 10<sup>7</sup> molecules by forming a distributed intermolecular network of proximal unique DNA barcodes tagging complementary DNA molecules inside the specimen. After sequencing the DNA-encoded network, an image of molecular positions is inferred using geodesic spectral embeddings, a dimensionality reduction approach that we show to be especially suitable for this data-inverse problem. Applying whole-transcriptome volumetric DNA microscopy to intact zebrafish embryos, we demonstrate that three-dimensional image inference recapitulates zebrafish morphology and known gene expression patterns, capturing the spatial organization of gene sequences. Our extension of spatial genetic measurements to three dimensions, independent of prior templates, opens the door to detailed joint resolution of genomics and morphology in biological tissues.</p>","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"34 1","pages":""},"PeriodicalIF":33.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41587-025-02613-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lymphatic, nervous and tumor tissues exhibit complex physiology arising from three-dimensional interactions within genetically unique microenvironments. Here we develop a technology capable of volumetrically imaging transcriptomes, genotypes and morphologies in a single measurement, without relying on prior knowledge of spatial organization or genetic sequences. Our method extends DNA microscopy into three dimensions at scales involving 107 molecules by forming a distributed intermolecular network of proximal unique DNA barcodes tagging complementary DNA molecules inside the specimen. After sequencing the DNA-encoded network, an image of molecular positions is inferred using geodesic spectral embeddings, a dimensionality reduction approach that we show to be especially suitable for this data-inverse problem. Applying whole-transcriptome volumetric DNA microscopy to intact zebrafish embryos, we demonstrate that three-dimensional image inference recapitulates zebrafish morphology and known gene expression patterns, capturing the spatial organization of gene sequences. Our extension of spatial genetic measurements to three dimensions, independent of prior templates, opens the door to detailed joint resolution of genomics and morphology in biological tissues.
期刊介绍:
Nature Biotechnology is a monthly journal that focuses on the science and business of biotechnology. It covers a wide range of topics including technology/methodology advancements in the biological, biomedical, agricultural, and environmental sciences. The journal also explores the commercial, political, ethical, legal, and societal aspects of this research.
The journal serves researchers by providing peer-reviewed research papers in the field of biotechnology. It also serves the business community by delivering news about research developments. This approach ensures that both the scientific and business communities are well-informed and able to stay up-to-date on the latest advancements and opportunities in the field.
Some key areas of interest in which the journal actively seeks research papers include molecular engineering of nucleic acids and proteins, molecular therapy, large-scale biology, computational biology, regenerative medicine, imaging technology, analytical biotechnology, applied immunology, food and agricultural biotechnology, and environmental biotechnology.
In summary, Nature Biotechnology is a comprehensive journal that covers both the scientific and business aspects of biotechnology. It strives to provide researchers with valuable research papers and news while also delivering important scientific advancements to the business community.