Yong-Han Peng, Jing-Wen Tang, Yi-Hua Li, Fei-Fang Zhang, Bing-Cheng Yang
{"title":"[Design and application of a gas-liquid separator for the removal of carbon dioxide in the eluent of an ion chromatography system].","authors":"Yong-Han Peng, Jing-Wen Tang, Yi-Hua Li, Fei-Fang Zhang, Bing-Cheng Yang","doi":"10.3724/SP.J.1123.2024.03021","DOIUrl":null,"url":null,"abstract":"<p><p>A gas-liquid separator (GLS) for the removal of carbon dioxide in the eluent of an ion chromatography (IC) system was developed. Firstly, the microporous hollow fiber polypropylene tube (PP-T) was inserted into the polytetrafluoroethylene tube (PTFE-T) with suitable inner diameter to form a double casing structure and wound into a spiral shape. Each terminal of the PP-T is 3 cm longer than that of the PTFE-T. Then the terminals of PP-T and PTFE-T were fixed respectively on two horizontal joints equipped with tee joints, and the regenerated liquid pipeline was fixed on a vertical arm interface equipped with tee joints. When the carbonate eluent flows into PP-T from the upstream suppressor, the inhibited carbonate solution will decompose and produce CO<sub>2</sub>, which then escapes through PP-T and enters the flowing absorption solution located in the annular space between PP-T and PTFE-T, so as to achieve continuous and effective CO<sub>2</sub> removal. The production conditions and operating conditions of GLS were optimized, including the length of PP-T, the inner diameter of PTFE-T, the operating temperature, the type, concentration and flow rate of the absorption solution. The experimental results show that when 40 mmol/L potassium hydroxide solution is used as absorption solution, the removal efficiency of CO<sub>2</sub> can reach more than 98% at the flow rate of 1 mL/min. Higher operating temperature is helpful to improve the removal efficiency of CO<sub>2</sub> and reduce the baseline noise. The optimized operating temperature in this study was 40 ℃. When applying this GLS to the IC system for carbonate eluent, using a mixed eluent of 1.8 mmol/L potassium carbonate-3.2 mmol/L potassium bicarbonate (1∶1, v/v), the background conductance signal decreased from 41.6 mV without GLS to 5.5 mV after using GLS. Using a mixed standard solution of common anions (F<sup>-</sup>、Cl<sup>-</sup>、[Formula: see text] on the separation of other anions.</p>","PeriodicalId":101336,"journal":{"name":"Se pu = Chinese journal of chromatography","volume":"43 4","pages":"382-387"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966376/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Se pu = Chinese journal of chromatography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3724/SP.J.1123.2024.03021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A gas-liquid separator (GLS) for the removal of carbon dioxide in the eluent of an ion chromatography (IC) system was developed. Firstly, the microporous hollow fiber polypropylene tube (PP-T) was inserted into the polytetrafluoroethylene tube (PTFE-T) with suitable inner diameter to form a double casing structure and wound into a spiral shape. Each terminal of the PP-T is 3 cm longer than that of the PTFE-T. Then the terminals of PP-T and PTFE-T were fixed respectively on two horizontal joints equipped with tee joints, and the regenerated liquid pipeline was fixed on a vertical arm interface equipped with tee joints. When the carbonate eluent flows into PP-T from the upstream suppressor, the inhibited carbonate solution will decompose and produce CO2, which then escapes through PP-T and enters the flowing absorption solution located in the annular space between PP-T and PTFE-T, so as to achieve continuous and effective CO2 removal. The production conditions and operating conditions of GLS were optimized, including the length of PP-T, the inner diameter of PTFE-T, the operating temperature, the type, concentration and flow rate of the absorption solution. The experimental results show that when 40 mmol/L potassium hydroxide solution is used as absorption solution, the removal efficiency of CO2 can reach more than 98% at the flow rate of 1 mL/min. Higher operating temperature is helpful to improve the removal efficiency of CO2 and reduce the baseline noise. The optimized operating temperature in this study was 40 ℃. When applying this GLS to the IC system for carbonate eluent, using a mixed eluent of 1.8 mmol/L potassium carbonate-3.2 mmol/L potassium bicarbonate (1∶1, v/v), the background conductance signal decreased from 41.6 mV without GLS to 5.5 mV after using GLS. Using a mixed standard solution of common anions (F-、Cl-、[Formula: see text] on the separation of other anions.