Generalized Gaussian Model for Learned Image Compression

Haotian Zhang;Li Li;Dong Liu
{"title":"Generalized Gaussian Model for Learned Image Compression","authors":"Haotian Zhang;Li Li;Dong Liu","doi":"10.1109/TIP.2025.3550013","DOIUrl":null,"url":null,"abstract":"In learned image compression, probabilistic models play an essential role in characterizing the distribution of latent variables. The Gaussian model with mean and scale parameters has been widely used for its simplicity and effectiveness. Probabilistic models with more parameters, such as the Gaussian mixture models, can fit the distribution of latent variables more precisely, but the corresponding complexity is higher. To balance the compression performance and complexity, we extend the Gaussian model to the generalized Gaussian family for more flexible latent distribution modeling, introducing only one additional shape parameter <inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula> than the Gaussian model. To enhance the performance of the generalized Gaussian model by alleviating the train-test mismatch, we propose improved training methods, including <inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>-dependent lower bounds for scale parameters and gradient rectification. Our proposed generalized Gaussian model, coupled with the improved training methods, is demonstrated to outperform the Gaussian and Gaussian mixture models on a variety of learned image compression networks.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"1950-1965"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10938038/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In learned image compression, probabilistic models play an essential role in characterizing the distribution of latent variables. The Gaussian model with mean and scale parameters has been widely used for its simplicity and effectiveness. Probabilistic models with more parameters, such as the Gaussian mixture models, can fit the distribution of latent variables more precisely, but the corresponding complexity is higher. To balance the compression performance and complexity, we extend the Gaussian model to the generalized Gaussian family for more flexible latent distribution modeling, introducing only one additional shape parameter $\beta $ than the Gaussian model. To enhance the performance of the generalized Gaussian model by alleviating the train-test mismatch, we propose improved training methods, including $\beta $ -dependent lower bounds for scale parameters and gradient rectification. Our proposed generalized Gaussian model, coupled with the improved training methods, is demonstrated to outperform the Gaussian and Gaussian mixture models on a variety of learned image compression networks.
学习图像压缩的广义高斯模型。
在学习图像压缩中,概率模型在描述潜在变量的分布方面起着至关重要的作用。带均值和尺度参数的高斯模型以其简单、有效的特点得到了广泛的应用。参数较多的概率模型,如高斯混合模型,可以更精确地拟合潜在变量的分布,但相应的复杂性较高。为了平衡压缩性能和复杂性,我们将高斯模型扩展到广义高斯族,以获得更灵活的潜在分布建模,只引入一个比高斯模型额外的形状参数β。为了提高广义高斯模型的性能,减轻训练-测试不匹配,我们提出了改进的训练方法,包括尺度参数的β依赖下界和梯度校正。我们提出的广义高斯模型,加上改进的训练方法,在各种学习图像压缩网络上都优于高斯和高斯混合模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信