Chang Che, Nian Xue, Zhen Li, Yilin Zhao, Xin Huang
{"title":"Automatic cassava disease recognition using object segmentation and progressive learning.","authors":"Chang Che, Nian Xue, Zhen Li, Yilin Zhao, Xin Huang","doi":"10.7717/peerj-cs.2721","DOIUrl":null,"url":null,"abstract":"<p><p>Cassava is a vital crop for millions of farmers worldwide, but its cultivation is threatened by various destructive diseases. Current detection methods for cassava diseases are costly, time-consuming, and often limited to controlled environments, making them unsuitable for large-scale agricultural use. This study aims to develop a deep learning framework that enables early, accurate, and efficient detection of cassava diseases in real-world conditions. We propose a self-supervised object segmentation technique, combined with a progressive learning algorithm (PLA) that incorporates both triplet loss and classification loss to learn robust feature embeddings. Our approach achieves superior performance on the Cassava Leaf Disease Classification (CLDC) dataset from the Kaggle competition, with an accuracy of 91.43%, outperforming all other participants. The proposed method offers a practical and efficient solution for cassava disease detection, demonstrating the potential for large-scale, real-world application in agriculture.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2721"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11935765/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2721","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Cassava is a vital crop for millions of farmers worldwide, but its cultivation is threatened by various destructive diseases. Current detection methods for cassava diseases are costly, time-consuming, and often limited to controlled environments, making them unsuitable for large-scale agricultural use. This study aims to develop a deep learning framework that enables early, accurate, and efficient detection of cassava diseases in real-world conditions. We propose a self-supervised object segmentation technique, combined with a progressive learning algorithm (PLA) that incorporates both triplet loss and classification loss to learn robust feature embeddings. Our approach achieves superior performance on the Cassava Leaf Disease Classification (CLDC) dataset from the Kaggle competition, with an accuracy of 91.43%, outperforming all other participants. The proposed method offers a practical and efficient solution for cassava disease detection, demonstrating the potential for large-scale, real-world application in agriculture.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.