{"title":"Optimization study of intelligent accounting manager system modules in adaptive behavioral pattern learning and simulation.","authors":"Yifan Wang, Rongjie Qin, Musadaq Mansoor","doi":"10.7717/peerj-cs.2684","DOIUrl":null,"url":null,"abstract":"<p><p>Within the ambit of the digital epoch, the advent of adaptive learning technologies heralds a paradigmatic shift in the realm of accounting management, garnering increasing scrutiny for augmenting learning outcomes <i>via</i> more sagacious educational methodologies and refining the accounting management protocols through the employment of sophisticated optimization techniques. This manuscript delineates an avant-garde health classification schema for accounting management, termed the A-CHMM-FD methodology, which amalgamates the merits of the Analytic Hierarchy Process (AHP) with the Coupled Hidden Markov Model (CHMM) to enhance the precision and efficacy of risk detection. Utilizing the AHP modality, we quantify diverse accounting metrics, subsequently subjected to independent scrutiny <i>via</i> the CHMM. This results in an exhaustive evaluation of entities as healthy, at-risk, or high-risk employing fuzzy delineations. Empirical validation on publicly available financial risk datasets and the pragmatic deployment of bespoke datasets affirm the superior efficiency and precision of the proposed framework. Applying this methodology within the health classification of accounting management emerges as efficacious, charting a novel technological trajectory for managing accounting risks and offering fresh perspectives on the nurturing of accounting understanding and the acquisition of knowledge.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2684"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11935778/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2684","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Within the ambit of the digital epoch, the advent of adaptive learning technologies heralds a paradigmatic shift in the realm of accounting management, garnering increasing scrutiny for augmenting learning outcomes via more sagacious educational methodologies and refining the accounting management protocols through the employment of sophisticated optimization techniques. This manuscript delineates an avant-garde health classification schema for accounting management, termed the A-CHMM-FD methodology, which amalgamates the merits of the Analytic Hierarchy Process (AHP) with the Coupled Hidden Markov Model (CHMM) to enhance the precision and efficacy of risk detection. Utilizing the AHP modality, we quantify diverse accounting metrics, subsequently subjected to independent scrutiny via the CHMM. This results in an exhaustive evaluation of entities as healthy, at-risk, or high-risk employing fuzzy delineations. Empirical validation on publicly available financial risk datasets and the pragmatic deployment of bespoke datasets affirm the superior efficiency and precision of the proposed framework. Applying this methodology within the health classification of accounting management emerges as efficacious, charting a novel technological trajectory for managing accounting risks and offering fresh perspectives on the nurturing of accounting understanding and the acquisition of knowledge.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.