Foundation Model and Radiomics-Based Quantitative Characterization of Perirenal Fat in Renal Cell Carcinoma Surgery.

IF 3.8 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Haonan Mei, Hui Chen, Qingyuan Zheng, Rui Yang, Nanxi Wang, Panpan Jiao, Xiao Wang, Zhiyuan Chen, Xiuheng Liu
{"title":"Foundation Model and Radiomics-Based Quantitative Characterization of Perirenal Fat in Renal Cell Carcinoma Surgery.","authors":"Haonan Mei, Hui Chen, Qingyuan Zheng, Rui Yang, Nanxi Wang, Panpan Jiao, Xiao Wang, Zhiyuan Chen, Xiuheng Liu","doi":"10.1016/j.acra.2025.03.002","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale and objectives: </strong>To quantitatively characterize the degree of perirenal fat adhesion using artificial intelligence in renal cell carcinoma.</p><p><strong>Materials and methods: </strong>This retrospective study analyzed a total of 596 patients from three cohorts, utilizing corticomedullary phase computed tomography urography (CTU) images. The nnUNet v2 network combined with numerical computation was employed to segment the perirenal fat region. Pyradiomics algorithms and a computed tomography foundation model were used to extract features from CTU images separately, creating single-modality predictive models for identifying perirenal fat adhesion. By concatenating the Pyradiomics and foundation model features, an early fusion multimodal predictive signature was developed. The prognostic performance of the single-modality and multimodality models was further validated in two independent cohorts.</p><p><strong>Results: </strong>The nnUNet v2 segmentation model accurately segmented both kidneys. The neural network and thresholding approach effectively delineated the perirenal fat region. Single-modality models based on radiomic and computed tomography foundation features demonstrated a certain degree of accuracy in diagnosing and identifying perirenal fat adhesion, while the early feature fusion diagnostic model outperformed the single-modality models. Also, the perirenal fat adhesion score showed a positive correlation with surgical time and intraoperative blood loss.</p><p><strong>Conclusion: </strong>AI-based radiomics and foundation models can accurately identify the degree of perirenal fat adhesion and have the potential to be used for surgical risk assessment.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2025.03.002","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Rationale and objectives: To quantitatively characterize the degree of perirenal fat adhesion using artificial intelligence in renal cell carcinoma.

Materials and methods: This retrospective study analyzed a total of 596 patients from three cohorts, utilizing corticomedullary phase computed tomography urography (CTU) images. The nnUNet v2 network combined with numerical computation was employed to segment the perirenal fat region. Pyradiomics algorithms and a computed tomography foundation model were used to extract features from CTU images separately, creating single-modality predictive models for identifying perirenal fat adhesion. By concatenating the Pyradiomics and foundation model features, an early fusion multimodal predictive signature was developed. The prognostic performance of the single-modality and multimodality models was further validated in two independent cohorts.

Results: The nnUNet v2 segmentation model accurately segmented both kidneys. The neural network and thresholding approach effectively delineated the perirenal fat region. Single-modality models based on radiomic and computed tomography foundation features demonstrated a certain degree of accuracy in diagnosing and identifying perirenal fat adhesion, while the early feature fusion diagnostic model outperformed the single-modality models. Also, the perirenal fat adhesion score showed a positive correlation with surgical time and intraoperative blood loss.

Conclusion: AI-based radiomics and foundation models can accurately identify the degree of perirenal fat adhesion and have the potential to be used for surgical risk assessment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Academic Radiology
Academic Radiology 医学-核医学
CiteScore
7.60
自引率
10.40%
发文量
432
审稿时长
18 days
期刊介绍: Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信