A SEMIPARAMETRIC METHOD FOR RISK PREDICTION USING INTEGRATED ELECTRONIC HEALTH RECORD DATA.

IF 1.3 4区 数学 Q2 STATISTICS & PROBABILITY
Annals of Applied Statistics Pub Date : 2024-12-01 Epub Date: 2024-10-31 DOI:10.1214/24-AOAS1938
Jill Hasler, Yanyuan Ma, Yizheng Wei, Ravi Parikh, Jinbo Chen
{"title":"A SEMIPARAMETRIC METHOD FOR RISK PREDICTION USING INTEGRATED ELECTRONIC HEALTH RECORD DATA.","authors":"Jill Hasler, Yanyuan Ma, Yizheng Wei, Ravi Parikh, Jinbo Chen","doi":"10.1214/24-AOAS1938","DOIUrl":null,"url":null,"abstract":"<p><p>When using electronic health records (EHRs) for clinical and translational research, additional data is often available from external sources to enrich the information extracted from EHRs. For example, academic biobanks have more granular data available, and patient reported data is often collected through small-scale surveys. It is common that the external data is available only for a small subset of patients who have EHR information. We propose efficient and robust methods for building and evaluating models for predicting the risk of binary outcomes using such integrated EHR data. Our method is built upon an idea derived from the two-phase design literature that modeling the availability of a patient's external data as a function of an EHR-based preliminary predictive score leads to effective utilization of the EHR data. Through both theoretical and simulation studies, we show that our method has high efficiency for estimating log-odds ratio parameters, the area under the ROC curve, as well as other measures for quantifying predictive accuracy. We apply our method to develop a model for predicting the short-term mortality risk of oncology patients, where the data was extracted from the University of Pennsylvania hospital system EHR and combined with survey-based patient reported outcome data.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"18 4","pages":"3318-3337"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934126/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/24-AOAS1938","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

When using electronic health records (EHRs) for clinical and translational research, additional data is often available from external sources to enrich the information extracted from EHRs. For example, academic biobanks have more granular data available, and patient reported data is often collected through small-scale surveys. It is common that the external data is available only for a small subset of patients who have EHR information. We propose efficient and robust methods for building and evaluating models for predicting the risk of binary outcomes using such integrated EHR data. Our method is built upon an idea derived from the two-phase design literature that modeling the availability of a patient's external data as a function of an EHR-based preliminary predictive score leads to effective utilization of the EHR data. Through both theoretical and simulation studies, we show that our method has high efficiency for estimating log-odds ratio parameters, the area under the ROC curve, as well as other measures for quantifying predictive accuracy. We apply our method to develop a model for predicting the short-term mortality risk of oncology patients, where the data was extracted from the University of Pennsylvania hospital system EHR and combined with survey-based patient reported outcome data.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Applied Statistics
Annals of Applied Statistics 社会科学-统计学与概率论
CiteScore
3.10
自引率
5.60%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信