{"title":"Dissecting transmission to understand parasite evolution.","authors":"Luís M Silva, Kayla C King, Jacob C Koella","doi":"10.1371/journal.ppat.1012964","DOIUrl":null,"url":null,"abstract":"<p><p>Parasite transmission is a complex, multi-stage process that significantly impacts host-parasite dynamics. Transmission plays a key role in epidemiology and virulence evolution, where it is expected to trade off with virulence. However, the extent to which classical models on virulence-transmission relationships apply in the real world is unclear. This insight piece proposes a novel framework that breaks transmission into three distinct stages: within-host infectiousness, an intermediate between-host stage (biotic or abiotic), and new host infection. Each stage is influenced by intrinsic and extrinsic factors to the parasite, which together will determine its transmission success. Analyzing the transmission stages separately and how they affect each other might enhance our understanding of which host-, parasite- or environmental-driven factors might shape parasite evolution and inform us about new effectors to act on when designing disease control strategies.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"21 3","pages":"e1012964"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11936216/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012964","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Parasite transmission is a complex, multi-stage process that significantly impacts host-parasite dynamics. Transmission plays a key role in epidemiology and virulence evolution, where it is expected to trade off with virulence. However, the extent to which classical models on virulence-transmission relationships apply in the real world is unclear. This insight piece proposes a novel framework that breaks transmission into three distinct stages: within-host infectiousness, an intermediate between-host stage (biotic or abiotic), and new host infection. Each stage is influenced by intrinsic and extrinsic factors to the parasite, which together will determine its transmission success. Analyzing the transmission stages separately and how they affect each other might enhance our understanding of which host-, parasite- or environmental-driven factors might shape parasite evolution and inform us about new effectors to act on when designing disease control strategies.
期刊介绍:
Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.