{"title":"SS-DTI: A deep learning method integrating semantic and structural information for drug-target interaction prediction.","authors":"Yujie Chun, Huaihu Li, Shunfang Wang","doi":"10.1142/S0219720025500027","DOIUrl":null,"url":null,"abstract":"<p><p>Drug-target interaction (DTI) prediction is pivotal in drug discovery and repurposing, providing a more efficient alternative to traditional wet-lab experiments by saving time and resources and expediting the identification of potential targets. Current DTI methods predominantly focus on extracting semantic features from drug and protein sequences or utilizing structural information, often neglecting the integration of both. This gap hinders the achievement of a comprehensive representation of drug and protein molecules. To address this, we propose SS-DTI, a novel end-to-end deep learning approach that integrates both semantic and structural information. Our method features a multi-scale semantic feature extraction block to capture local and global information from sequences and employs Graph Convolutional Networks (GCNs) to learn structural features. Evaluations on four benchmark datasets demonstrate that SS-DTI outperforms state-of-the-art methods, showcasing its superior predictive performance. Our code is available at https://github.com/RobinChun/SS-DTI.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":" ","pages":"2550002"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720025500027","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/25 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Drug-target interaction (DTI) prediction is pivotal in drug discovery and repurposing, providing a more efficient alternative to traditional wet-lab experiments by saving time and resources and expediting the identification of potential targets. Current DTI methods predominantly focus on extracting semantic features from drug and protein sequences or utilizing structural information, often neglecting the integration of both. This gap hinders the achievement of a comprehensive representation of drug and protein molecules. To address this, we propose SS-DTI, a novel end-to-end deep learning approach that integrates both semantic and structural information. Our method features a multi-scale semantic feature extraction block to capture local and global information from sequences and employs Graph Convolutional Networks (GCNs) to learn structural features. Evaluations on four benchmark datasets demonstrate that SS-DTI outperforms state-of-the-art methods, showcasing its superior predictive performance. Our code is available at https://github.com/RobinChun/SS-DTI.
期刊介绍:
The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information.
The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.