Ioannis Antonakos, Matina Patsioti, Maria-Eleni Zachou, George Christopoulos, Efstathios P Efstathopoulos
{"title":"Typical Diagnostic Reference Levels of Radiation Exposure on Neonates Under 1 kg in Mobile Chest Imaging in Incubators.","authors":"Ioannis Antonakos, Matina Patsioti, Maria-Eleni Zachou, George Christopoulos, Efstathios P Efstathopoulos","doi":"10.3390/jimaging11030074","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study is to determine the typical diagnostic reference levels (DRLs) of radiation exposure values for chest radiographs in neonates (<1 kg) in mobile imaging at a University Hospital in Greece and compare these values with the existing DRL values from the literature. Patient and dosimetry data, including age, sex, weight, tube voltage (kV), tube current (mA), exposure time (s), exposure index of a digital detector (S), and dose area product (DAP) were obtained from a total of 80 chest radiography examinations performed on neonates (<1 kg and <30 days old). All examinations were performed in a single X-ray system, and all data (demographic and dosimetry data) were collected from the PACS of the hospital. Typical radiation exposure values were determined as the median value of DAP and ESD distribution. Afterward, these typical values were compared with DRL values from other countries. Three radiologists reviewed the images to evaluate image quality for dose optimization in neonatal chest radiography. From all examinations, the mean value and standard deviation of DAP was 0.13 ± 0.11 dGy·cm<sup>2</sup> (range: 0.01-0.46 dGy·cm<sup>2</sup>), and ESD was measured at 11.55 ± 4.96 μGy (range: 4.01-30.4 μGy). The typical values in terms of DAP and ESD were estimated to be 0.08 dGy·cm<sup>2</sup> and 9.87 μGy, respectively. The results show that the DAP value decreases as the exposure index increases. This study's typical values were lower than the DRLs reported in the literature because our population had lower weight and age. From the subjective evaluation of image quality, it was revealed that the vast majority of radiographs (over 80%) met the criteria for being diagnostic as they received an excellent rating in terms of noise levels, contrast, and sharpness. This study contributes to the recording of typical dose values in a sensitive and rare category of patients (neonates weighing <1 kg) as well as information on the image quality of chest X-rays that were performed in this group.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943147/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11030074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this study is to determine the typical diagnostic reference levels (DRLs) of radiation exposure values for chest radiographs in neonates (<1 kg) in mobile imaging at a University Hospital in Greece and compare these values with the existing DRL values from the literature. Patient and dosimetry data, including age, sex, weight, tube voltage (kV), tube current (mA), exposure time (s), exposure index of a digital detector (S), and dose area product (DAP) were obtained from a total of 80 chest radiography examinations performed on neonates (<1 kg and <30 days old). All examinations were performed in a single X-ray system, and all data (demographic and dosimetry data) were collected from the PACS of the hospital. Typical radiation exposure values were determined as the median value of DAP and ESD distribution. Afterward, these typical values were compared with DRL values from other countries. Three radiologists reviewed the images to evaluate image quality for dose optimization in neonatal chest radiography. From all examinations, the mean value and standard deviation of DAP was 0.13 ± 0.11 dGy·cm2 (range: 0.01-0.46 dGy·cm2), and ESD was measured at 11.55 ± 4.96 μGy (range: 4.01-30.4 μGy). The typical values in terms of DAP and ESD were estimated to be 0.08 dGy·cm2 and 9.87 μGy, respectively. The results show that the DAP value decreases as the exposure index increases. This study's typical values were lower than the DRLs reported in the literature because our population had lower weight and age. From the subjective evaluation of image quality, it was revealed that the vast majority of radiographs (over 80%) met the criteria for being diagnostic as they received an excellent rating in terms of noise levels, contrast, and sharpness. This study contributes to the recording of typical dose values in a sensitive and rare category of patients (neonates weighing <1 kg) as well as information on the image quality of chest X-rays that were performed in this group.