Deep Learning-Based Computer-Aided Diagnosis in Coronary Artery Calcium-Scoring CT for Pulmonary Nodule Detection: A Preliminary Study.

IF 2.6 4区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Seung Yun Lee, Ji Weon Lee, Jung Im Jung, Kyunghwa Han, Suyon Chang
{"title":"Deep Learning-Based Computer-Aided Diagnosis in Coronary Artery Calcium-Scoring CT for Pulmonary Nodule Detection: A Preliminary Study.","authors":"Seung Yun Lee, Ji Weon Lee, Jung Im Jung, Kyunghwa Han, Suyon Chang","doi":"10.3349/ymj.2024.0050","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate the feasibility and utility of deep learning-based computer-aided diagnosis (DL-CAD) for the detection of pulmonary nodules on coronary artery calcium (CAC)-scoring computed tomography (CT).</p><p><strong>Materials and methods: </strong>This retrospective study included 273 patients (aged 63.9±13.2 years; 129 men) who underwent CAC-scoring CT. A DL-CAD system based on thin-section images was used for pulmonary nodule detection, and two independent junior readers reviewed the standard CAC-scoring CT scans with and without referencing DL-CAD results. A reference standard was established through the consensus of two experienced radiologists. Sensitivity, positive predictive value, and F1-score were assessed on a per-nodule and per-patient basis. The patients' medical records were monitored until November 2023.</p><p><strong>Results: </strong>A total of 269 nodules were identified in 129 patients. With DL-CAD assistance, the readers' sensitivity significantly improved (65% vs. 80% for reader 1; 82% vs. 86% for reader 2; all <i>p</i><0.001), without a notable increase in the number of false-positives per case (0.11 vs. 0.13, <i>p</i>=0.078 for reader 1; 0.11 vs. 0.11, <i>p</i>>0.999 for reader 2). Per-patient analysis also enhanced sensitivity with DL-CAD assistance (73% vs. 84%, <i>p</i><0.001 for reader 1; 89% vs. 91%, <i>p</i>=0.250 for reader 2). During follow-up, lung cancer was diagnosed in four patients (1.5%). Among them, two had lesions detected on CAC-scoring CT, both of which were successfully identified by DL-CAD.</p><p><strong>Conclusion: </strong>DL-CAD based on thin-section images can assist less experienced readers in detecting pulmonary nodules on CAC-scoring CT scans, improving detection sensitivity without significantly increasing false-positives.</p>","PeriodicalId":23765,"journal":{"name":"Yonsei Medical Journal","volume":"66 4","pages":"240-248"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955396/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yonsei Medical Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3349/ymj.2024.0050","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To evaluate the feasibility and utility of deep learning-based computer-aided diagnosis (DL-CAD) for the detection of pulmonary nodules on coronary artery calcium (CAC)-scoring computed tomography (CT).

Materials and methods: This retrospective study included 273 patients (aged 63.9±13.2 years; 129 men) who underwent CAC-scoring CT. A DL-CAD system based on thin-section images was used for pulmonary nodule detection, and two independent junior readers reviewed the standard CAC-scoring CT scans with and without referencing DL-CAD results. A reference standard was established through the consensus of two experienced radiologists. Sensitivity, positive predictive value, and F1-score were assessed on a per-nodule and per-patient basis. The patients' medical records were monitored until November 2023.

Results: A total of 269 nodules were identified in 129 patients. With DL-CAD assistance, the readers' sensitivity significantly improved (65% vs. 80% for reader 1; 82% vs. 86% for reader 2; all p<0.001), without a notable increase in the number of false-positives per case (0.11 vs. 0.13, p=0.078 for reader 1; 0.11 vs. 0.11, p>0.999 for reader 2). Per-patient analysis also enhanced sensitivity with DL-CAD assistance (73% vs. 84%, p<0.001 for reader 1; 89% vs. 91%, p=0.250 for reader 2). During follow-up, lung cancer was diagnosed in four patients (1.5%). Among them, two had lesions detected on CAC-scoring CT, both of which were successfully identified by DL-CAD.

Conclusion: DL-CAD based on thin-section images can assist less experienced readers in detecting pulmonary nodules on CAC-scoring CT scans, improving detection sensitivity without significantly increasing false-positives.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Yonsei Medical Journal
Yonsei Medical Journal 医学-医学:内科
CiteScore
4.50
自引率
0.00%
发文量
167
审稿时长
3 months
期刊介绍: The goal of the Yonsei Medical Journal (YMJ) is to publish high quality manuscripts dedicated to clinical or basic research. Any authors affiliated with an accredited biomedical institution may submit manuscripts of original articles, review articles, case reports, brief communications, and letters to the Editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信