Machine Learning for Human Activity Recognition: State-of-the-Art Techniques and Emerging Trends.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Md Amran Hossen, Pg Emeroylariffion Abas
{"title":"Machine Learning for Human Activity Recognition: State-of-the-Art Techniques and Emerging Trends.","authors":"Md Amran Hossen, Pg Emeroylariffion Abas","doi":"10.3390/jimaging11030091","DOIUrl":null,"url":null,"abstract":"<p><p>Human activity recognition (HAR) has emerged as a transformative field with widespread applications, leveraging diverse sensor modalities to accurately identify and classify human activities. This paper provides a comprehensive review of HAR techniques, focusing on the integration of sensor-based, vision-based, and hybrid methodologies. It explores the strengths and limitations of commonly used modalities, such as RGB images/videos, depth sensors, motion capture systems, wearable devices, and emerging technologies like radar and Wi-Fi channel state information. The review also discusses traditional machine learning approaches, including supervised and unsupervised learning, alongside cutting-edge advancements in deep learning, such as convolutional and recurrent neural networks, attention mechanisms, and reinforcement learning frameworks. Despite significant progress, HAR still faces critical challenges, including handling environmental variability, ensuring model interpretability, and achieving high recognition accuracy in complex, real-world scenarios. Future research directions emphasise the need for improved multimodal sensor fusion, adaptive and personalised models, and the integration of edge computing for real-time analysis. Additionally, addressing ethical considerations, such as privacy and algorithmic fairness, remains a priority as HAR systems become more pervasive. This study highlights the evolving landscape of HAR and outlines strategies for future advancements that can enhance the reliability and applicability of HAR technologies in diverse domains.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943402/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11030091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Human activity recognition (HAR) has emerged as a transformative field with widespread applications, leveraging diverse sensor modalities to accurately identify and classify human activities. This paper provides a comprehensive review of HAR techniques, focusing on the integration of sensor-based, vision-based, and hybrid methodologies. It explores the strengths and limitations of commonly used modalities, such as RGB images/videos, depth sensors, motion capture systems, wearable devices, and emerging technologies like radar and Wi-Fi channel state information. The review also discusses traditional machine learning approaches, including supervised and unsupervised learning, alongside cutting-edge advancements in deep learning, such as convolutional and recurrent neural networks, attention mechanisms, and reinforcement learning frameworks. Despite significant progress, HAR still faces critical challenges, including handling environmental variability, ensuring model interpretability, and achieving high recognition accuracy in complex, real-world scenarios. Future research directions emphasise the need for improved multimodal sensor fusion, adaptive and personalised models, and the integration of edge computing for real-time analysis. Additionally, addressing ethical considerations, such as privacy and algorithmic fairness, remains a priority as HAR systems become more pervasive. This study highlights the evolving landscape of HAR and outlines strategies for future advancements that can enhance the reliability and applicability of HAR technologies in diverse domains.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信