{"title":"CRISPR/Cas technologies for cancer drug discovery and treatment.","authors":"Kevin C Wang, Tiffany Zheng, Basil P Hubbard","doi":"10.1016/j.tips.2025.02.009","DOIUrl":null,"url":null,"abstract":"<p><p>Clustered regularly interspaced short palindromic repeats (CRISPR) tools are revolutionizing the establishment of genotype-phenotype relationships and are transforming cell- and gene-based therapies. In the field of oncology, CRISPR/CRISPR-associated protein 9 (Cas9), Cas12, and Cas13 have advanced the generation of cancer models, the study of tumor evolution, the identification of target genes involved in cancer growth, and the discovery of genes involved in chemosensitivity and resistance. Moreover, preclinical therapeutic strategies employing CRISPR/Cas have emerged. These include the generation of chimeric antigen receptor T (CAR-T) cells and engineered immune cells, and the use of precision anticancer gene-editing agents to inactivate driver oncogenes, suppress tumor support genes, and cull cancer cells in response to genetic circuit output. This review summarizes the collective impact that CRISPR technology has had on basic and applied cancer research, and highlights the promises and challenges facing its clinical translation.</p>","PeriodicalId":23250,"journal":{"name":"Trends in pharmacological sciences","volume":" ","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in pharmacological sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tips.2025.02.009","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) tools are revolutionizing the establishment of genotype-phenotype relationships and are transforming cell- and gene-based therapies. In the field of oncology, CRISPR/CRISPR-associated protein 9 (Cas9), Cas12, and Cas13 have advanced the generation of cancer models, the study of tumor evolution, the identification of target genes involved in cancer growth, and the discovery of genes involved in chemosensitivity and resistance. Moreover, preclinical therapeutic strategies employing CRISPR/Cas have emerged. These include the generation of chimeric antigen receptor T (CAR-T) cells and engineered immune cells, and the use of precision anticancer gene-editing agents to inactivate driver oncogenes, suppress tumor support genes, and cull cancer cells in response to genetic circuit output. This review summarizes the collective impact that CRISPR technology has had on basic and applied cancer research, and highlights the promises and challenges facing its clinical translation.
期刊介绍:
Trends in Pharmacological Sciences (TIPS) is a monthly peer-reviewed reviews journal that focuses on a wide range of topics in pharmacology, pharmacy, pharmaceutics, and toxicology. Launched in 1979, TIPS publishes concise articles discussing the latest advancements in pharmacology and therapeutics research.
The journal encourages submissions that align with its core themes while also being open to articles on the biopharma regulatory landscape, science policy and regulation, and bioethics.
Each issue of TIPS provides a platform for experts to share their insights and perspectives on the most exciting developments in the field. Through rigorous peer review, the journal ensures the quality and reliability of published articles.
Authors are invited to contribute articles that contribute to the understanding of pharmacology and its applications in various domains. Whether it's exploring innovative drug therapies or discussing the ethical considerations of pharmaceutical research, TIPS provides a valuable resource for researchers, practitioners, and policymakers in the pharmacological sciences.