{"title":"Revealing antagonistic interactions in the adverse effects of polystyrene and poly(methyl methacrylate) microplastics in bumblebees.","authors":"Federico Cappa, Elisa Pasquini, Alessia Ibraliu, Ginevra Muti, Federico Ferrante, David Baracchi","doi":"10.1098/rspb.2025.0047","DOIUrl":null,"url":null,"abstract":"<p><p>Microplastics pose a significant ecological threat, yet their actual impact on terrestrial ecosystems and organisms remains poorly understood. This study investigates the effects of two common microplastics, poly(methyl methacrylate) (PMMA) and polystyrene (PS), on the pollinator <i>Bombus terrestris</i>, exploring their combined and sublethal effects at three different concentrations (0.5, 5 and 50 mg l<sup>-1</sup>). PMMA and PS single exposure reduced bee survival in a concentration-dependent manner, whereas combined exposure (MIX) had no significant effect. PS reduced bee sucrose responsiveness, PMMA had no significant effect and MIX enhanced it. Learning and memory tests showed impaired mid-term and early long-term memory in bees exposed to PMMA and PS, with concentration-dependent effects. Interestingly, MIX exposure had no effect on memory retention. Our findings emphasize the differential effects of individual microplastics on bumblebee behaviour, suggesting potential risks to pollinator survival, cognitive function and possibly overall colony health, but also unexpected antagonistic interactions between these pollutants. The PS-PMMA antagonistic interactions highlight a challenge in assessing the toxicity of microplastics. Combined effects may not mirror the individual toxicity of PS and PMMA, highlighting the need for a careful assessment of polymer interactions, especially in environments or organisms contaminated by different microplastics.</p>","PeriodicalId":20589,"journal":{"name":"Proceedings of the Royal Society B: Biological Sciences","volume":"292 2043","pages":"20250047"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11936681/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rspb.2025.0047","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics pose a significant ecological threat, yet their actual impact on terrestrial ecosystems and organisms remains poorly understood. This study investigates the effects of two common microplastics, poly(methyl methacrylate) (PMMA) and polystyrene (PS), on the pollinator Bombus terrestris, exploring their combined and sublethal effects at three different concentrations (0.5, 5 and 50 mg l-1). PMMA and PS single exposure reduced bee survival in a concentration-dependent manner, whereas combined exposure (MIX) had no significant effect. PS reduced bee sucrose responsiveness, PMMA had no significant effect and MIX enhanced it. Learning and memory tests showed impaired mid-term and early long-term memory in bees exposed to PMMA and PS, with concentration-dependent effects. Interestingly, MIX exposure had no effect on memory retention. Our findings emphasize the differential effects of individual microplastics on bumblebee behaviour, suggesting potential risks to pollinator survival, cognitive function and possibly overall colony health, but also unexpected antagonistic interactions between these pollutants. The PS-PMMA antagonistic interactions highlight a challenge in assessing the toxicity of microplastics. Combined effects may not mirror the individual toxicity of PS and PMMA, highlighting the need for a careful assessment of polymer interactions, especially in environments or organisms contaminated by different microplastics.
期刊介绍:
Proceedings B is the Royal Society’s flagship biological research journal, accepting original articles and reviews of outstanding scientific importance and broad general interest. The main criteria for acceptance are that a study is novel, and has general significance to biologists. Articles published cover a wide range of areas within the biological sciences, many have relevance to organisms and the environments in which they live. The scope includes, but is not limited to, ecology, evolution, behavior, health and disease epidemiology, neuroscience and cognition, behavioral genetics, development, biomechanics, paleontology, comparative biology, molecular ecology and evolution, and global change biology.