Gongting Wang, Lixiang Chen, Radoslaw Martin Cichy, Daniel Kaiser
{"title":"Enhanced and idiosyncratic neural representations of personally typical scenes.","authors":"Gongting Wang, Lixiang Chen, Radoslaw Martin Cichy, Daniel Kaiser","doi":"10.1098/rspb.2025.0272","DOIUrl":null,"url":null,"abstract":"<p><p>Previous research shows that the typicality of visual scenes (i.e. if they are good examples of a category) determines how easily they can be perceived and represented in the brain. However, the unique visual diets individuals are exposed to across their lifetimes should sculpt very personal notions of typicality. Here, we thus investigated whether scenes that are more typical to individual observers are more accurately perceived and represented in the brain. We used drawings to enable participants to describe typical scenes (e.g. a kitchen) and converted these drawings into three-dimensional renders. These renders were used as stimuli in a scene categorization task, during which we recorded electroencephalography (EEG). In line with previous findings, categorization was most accurate for renders resembling the typical scene drawings of individual participants. Our EEG analyses reveal two critical insights on how these individual differences emerge on the neural level. First, personally typical scenes yielded enhanced neural representations from around 200 ms after onset. Second, personally typical scenes were represented in idiosyncratic ways, with reduced dependence on high-level visual features. We interpret these findings in a predictive processing framework, where individual differences in internal models of scene categories formed through experience shape visual analysis in idiosyncratic ways.</p>","PeriodicalId":20589,"journal":{"name":"Proceedings of the Royal Society B: Biological Sciences","volume":"292 2043","pages":"20250272"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11936675/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rspb.2025.0272","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Previous research shows that the typicality of visual scenes (i.e. if they are good examples of a category) determines how easily they can be perceived and represented in the brain. However, the unique visual diets individuals are exposed to across their lifetimes should sculpt very personal notions of typicality. Here, we thus investigated whether scenes that are more typical to individual observers are more accurately perceived and represented in the brain. We used drawings to enable participants to describe typical scenes (e.g. a kitchen) and converted these drawings into three-dimensional renders. These renders were used as stimuli in a scene categorization task, during which we recorded electroencephalography (EEG). In line with previous findings, categorization was most accurate for renders resembling the typical scene drawings of individual participants. Our EEG analyses reveal two critical insights on how these individual differences emerge on the neural level. First, personally typical scenes yielded enhanced neural representations from around 200 ms after onset. Second, personally typical scenes were represented in idiosyncratic ways, with reduced dependence on high-level visual features. We interpret these findings in a predictive processing framework, where individual differences in internal models of scene categories formed through experience shape visual analysis in idiosyncratic ways.
期刊介绍:
Proceedings B is the Royal Society’s flagship biological research journal, accepting original articles and reviews of outstanding scientific importance and broad general interest. The main criteria for acceptance are that a study is novel, and has general significance to biologists. Articles published cover a wide range of areas within the biological sciences, many have relevance to organisms and the environments in which they live. The scope includes, but is not limited to, ecology, evolution, behavior, health and disease epidemiology, neuroscience and cognition, behavioral genetics, development, biomechanics, paleontology, comparative biology, molecular ecology and evolution, and global change biology.