ZNF768 loss amplifies p53 action and reduces lung tumorigenesis in mice.

IF 6.9 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Audrey Poirier, Timon Utecht, Romain Villot, Yves Gélinas, Mathilde Mouchiroud, Manal Kordahi, Alona Kolnohuz, Coline Pasteur, Joanny Roy, Marie-Josée Beaulieu, Michèle Orain, Nolwenn Samson, Marie-Renée Blanchet, Philippe Joubert, Mathieu Laplante
{"title":"ZNF768 loss amplifies p53 action and reduces lung tumorigenesis in mice.","authors":"Audrey Poirier, Timon Utecht, Romain Villot, Yves Gélinas, Mathilde Mouchiroud, Manal Kordahi, Alona Kolnohuz, Coline Pasteur, Joanny Roy, Marie-Josée Beaulieu, Michèle Orain, Nolwenn Samson, Marie-Renée Blanchet, Philippe Joubert, Mathieu Laplante","doi":"10.1038/s41388-025-03352-w","DOIUrl":null,"url":null,"abstract":"<p><p>Cell proliferation is a fundamental process required for organismal development, growth, and maintenance. Failure to control this process leads to several diseases, including cancer. Zinc finger protein 768 (ZNF768) is an emerging transcription factor that plays key roles in driving proliferation. In addition to controlling a gene network supporting cell division, ZNF768 physically interacts and inhibits the activity of the tumor suppressor p53. Although the importance of ZNF768 in promoting cell proliferation has been well demonstrated in vitro, the physiological and pathological roles of ZNF768 in vivo are still unknown. Here, we report the generation and characterization of a ZNF768 null mouse model. ZNF768 null mice are viable but show a growth defect early in life. Mouse embryonic fibroblasts (MEFs) isolated from ZNF768 null embryos exhibit higher p53 levels, premature senescence, and higher sensitivity to genotoxic stress. In line with these findings, ZNF768 null mice showed increased radiosensitivity. This effect was associated not only with higher expression of a subset of p53 target genes, but also with alterations in genes regulating transmembrane receptor signaling, cell adhesion, and growth. Because ZNF768 levels are elevated in tumors, we tested the impact of ZNF768 loss on cancer development in mice. Here, we show that ZNF768 deletion was sufficient to repress lung tumor development in a KRAS<sup>G12D</sup>-induced cancer mouse model. Overall, our findings establish ZNF768 as an important protein controlling cell proliferation that could potentially be targeted to reduce tumorigenesis.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41388-025-03352-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cell proliferation is a fundamental process required for organismal development, growth, and maintenance. Failure to control this process leads to several diseases, including cancer. Zinc finger protein 768 (ZNF768) is an emerging transcription factor that plays key roles in driving proliferation. In addition to controlling a gene network supporting cell division, ZNF768 physically interacts and inhibits the activity of the tumor suppressor p53. Although the importance of ZNF768 in promoting cell proliferation has been well demonstrated in vitro, the physiological and pathological roles of ZNF768 in vivo are still unknown. Here, we report the generation and characterization of a ZNF768 null mouse model. ZNF768 null mice are viable but show a growth defect early in life. Mouse embryonic fibroblasts (MEFs) isolated from ZNF768 null embryos exhibit higher p53 levels, premature senescence, and higher sensitivity to genotoxic stress. In line with these findings, ZNF768 null mice showed increased radiosensitivity. This effect was associated not only with higher expression of a subset of p53 target genes, but also with alterations in genes regulating transmembrane receptor signaling, cell adhesion, and growth. Because ZNF768 levels are elevated in tumors, we tested the impact of ZNF768 loss on cancer development in mice. Here, we show that ZNF768 deletion was sufficient to repress lung tumor development in a KRASG12D-induced cancer mouse model. Overall, our findings establish ZNF768 as an important protein controlling cell proliferation that could potentially be targeted to reduce tumorigenesis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Oncogene
Oncogene 医学-生化与分子生物学
CiteScore
15.30
自引率
1.20%
发文量
404
审稿时长
1 months
期刊介绍: Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge. Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信