Xinlei Wang, Lei Yu, Xuemeng Zhou, Grace Tin-Yun Chung, Alyssa Ming-Ting Liu, Yuk-Yu Chan, Man Wu, Kin Yung Chau, Kwok-Wai Lo, Angela Ruohao Wu
{"title":"Characterizing resistant cellular states in nasopharyngeal carcinoma during EBV lytic induction.","authors":"Xinlei Wang, Lei Yu, Xuemeng Zhou, Grace Tin-Yun Chung, Alyssa Ming-Ting Liu, Yuk-Yu Chan, Man Wu, Kin Yung Chau, Kwok-Wai Lo, Angela Ruohao Wu","doi":"10.1038/s41388-025-03341-z","DOIUrl":null,"url":null,"abstract":"<p><p>The pervasive occurrence of nasopharyngeal carcinoma (NPC) is intricately linked to Epstein-Barr virus (EBV) infection, making EBV and its associated pathways promising therapeutic targets for NPC and other EBV-related cancers. Lytic induction therapy, an emerging virus-targeted therapeutic strategy, capitalizes on the presence of EBV in tumor cells to specifically induce cytotoxicity against EBV-associated malignancies. Despite the expanding repertoire of compounds developed to induce EBV lytic reactivation, achieving universal induction across all infected cells remains elusive. The inherent heterogeneity of tumor cells likely contributes to this variability. In this study, we used the NPC43 cell line, an EBV-positive NPC in vitro model, and single-cell transcriptomics to characterize the diverse cellular responses to EBV lytic induction. Our longitudinal monitoring revealed a distinctive lytic induction non-responsive cellular state characterized by elevated expression of SOX2 and NTRK2. Cells in this state exhibit phenotypic similarities to cancer stem cells (CSCs), and we verified the roles of SOX2 and NTRK2 in manifesting these phenotypes. Our findings reveal a significant challenge for lytic induction therapy, as not all tumor cells are equally susceptible. These insights highlight the importance of combining lytic induction with therapies targeting CSC-like properties to enhance treatment efficacy for NPC and other EBV-associated cancers.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41388-025-03341-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The pervasive occurrence of nasopharyngeal carcinoma (NPC) is intricately linked to Epstein-Barr virus (EBV) infection, making EBV and its associated pathways promising therapeutic targets for NPC and other EBV-related cancers. Lytic induction therapy, an emerging virus-targeted therapeutic strategy, capitalizes on the presence of EBV in tumor cells to specifically induce cytotoxicity against EBV-associated malignancies. Despite the expanding repertoire of compounds developed to induce EBV lytic reactivation, achieving universal induction across all infected cells remains elusive. The inherent heterogeneity of tumor cells likely contributes to this variability. In this study, we used the NPC43 cell line, an EBV-positive NPC in vitro model, and single-cell transcriptomics to characterize the diverse cellular responses to EBV lytic induction. Our longitudinal monitoring revealed a distinctive lytic induction non-responsive cellular state characterized by elevated expression of SOX2 and NTRK2. Cells in this state exhibit phenotypic similarities to cancer stem cells (CSCs), and we verified the roles of SOX2 and NTRK2 in manifesting these phenotypes. Our findings reveal a significant challenge for lytic induction therapy, as not all tumor cells are equally susceptible. These insights highlight the importance of combining lytic induction with therapies targeting CSC-like properties to enhance treatment efficacy for NPC and other EBV-associated cancers.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.