Application of rapid Nanopore metagenomic cell-free DNA sequencing to diagnose bloodstream infections: a prospective observational study.

IF 3.7 2区 生物学 Q2 MICROBIOLOGY
Morten Eneberg Nielsen, Kirstine Kobberøe Søgaard, Søren Michael Karst, Anne Lund Krarup, Mads Albertsen, Hans Linde Nielsen
{"title":"Application of rapid Nanopore metagenomic cell-free DNA sequencing to diagnose bloodstream infections: a prospective observational study.","authors":"Morten Eneberg Nielsen, Kirstine Kobberøe Søgaard, Søren Michael Karst, Anne Lund Krarup, Mads Albertsen, Hans Linde Nielsen","doi":"10.1128/spectrum.03295-24","DOIUrl":null,"url":null,"abstract":"<p><p>Bloodstream infections are a major cause of mortality, often leading to sepsis or septic shock. Rapid initiation of effective antimicrobial therapy is essential for survival; however, the current gold standard for identifying pathogens in bloodstream infections, blood culturing, has limitations with long turnaround time and poor sensitivity. This delay in refining empirical broad-spectrum antimicrobial treatments contributes to increased mortality and the development of antimicrobial resistance. In this study, we developed a metagenomic next-generation sequencing assay utilizing the Oxford Nanopore Technologies platform to sequence microbial cell-free DNA from blood plasma. We demonstrated proof of concept in a prospective observational clinical study including patients (<i>n</i> = 40) admitted to the emergency ward on suspicion of bloodstream infection. Study samples were drawn from the same venipuncture as a blood culture sample from the included patients. Nanopore metagenomic sequencing confirmed all microbiological findings in patients with positive blood cultures (<i>n</i> = 11) and identified pathogens relevant to the acute infection in an additional 11 patients with negative blood cultures. This proof-of-concept study demonstrates that culture-independent Nanopore metagenomic sequencing directly on blood plasma could be a feasible supplementary test for infection diagnostics in patients admitted with severe infections or sepsis. These findings support further studies on Nanopore metagenomic sequencing for sepsis diagnostics in larger cohorts to validate and expand the results from this study.IMPORTANCEThis study demonstrates the potential of Nanopore metagenomic sequencing as a rapid, culture-independent diagnostic tool for bloodstream infections, identifying pathogens missed by conventional blood cultures. The study highlights the method's promise in improving pathogen detection and warrants further validation in larger clinical studies.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":" ","pages":"e0329524"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology spectrum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/spectrum.03295-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bloodstream infections are a major cause of mortality, often leading to sepsis or septic shock. Rapid initiation of effective antimicrobial therapy is essential for survival; however, the current gold standard for identifying pathogens in bloodstream infections, blood culturing, has limitations with long turnaround time and poor sensitivity. This delay in refining empirical broad-spectrum antimicrobial treatments contributes to increased mortality and the development of antimicrobial resistance. In this study, we developed a metagenomic next-generation sequencing assay utilizing the Oxford Nanopore Technologies platform to sequence microbial cell-free DNA from blood plasma. We demonstrated proof of concept in a prospective observational clinical study including patients (n = 40) admitted to the emergency ward on suspicion of bloodstream infection. Study samples were drawn from the same venipuncture as a blood culture sample from the included patients. Nanopore metagenomic sequencing confirmed all microbiological findings in patients with positive blood cultures (n = 11) and identified pathogens relevant to the acute infection in an additional 11 patients with negative blood cultures. This proof-of-concept study demonstrates that culture-independent Nanopore metagenomic sequencing directly on blood plasma could be a feasible supplementary test for infection diagnostics in patients admitted with severe infections or sepsis. These findings support further studies on Nanopore metagenomic sequencing for sepsis diagnostics in larger cohorts to validate and expand the results from this study.IMPORTANCEThis study demonstrates the potential of Nanopore metagenomic sequencing as a rapid, culture-independent diagnostic tool for bloodstream infections, identifying pathogens missed by conventional blood cultures. The study highlights the method's promise in improving pathogen detection and warrants further validation in larger clinical studies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbiology spectrum
Microbiology spectrum Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.20
自引率
5.40%
发文量
1800
期刊介绍: Microbiology Spectrum publishes commissioned review articles on topics in microbiology representing ten content areas: Archaea; Food Microbiology; Bacterial Genetics, Cell Biology, and Physiology; Clinical Microbiology; Environmental Microbiology and Ecology; Eukaryotic Microbes; Genomics, Computational, and Synthetic Microbiology; Immunology; Pathogenesis; and Virology. Reviews are interrelated, with each review linking to other related content. A large board of Microbiology Spectrum editors aids in the development of topics for potential reviews and in the identification of an editor, or editors, who shepherd each collection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信