Phase-Incremental Decision Trees for Multi-Phase Feature Selection and Interaction in Biologics Manufacturing.

Q3 Medicine
Nolan Gunter, Yang Tang, Jonathan Ritscher, Yiming Peng
{"title":"Phase-Incremental Decision Trees for Multi-Phase Feature Selection and Interaction in Biologics Manufacturing.","authors":"Nolan Gunter, Yang Tang, Jonathan Ritscher, Yiming Peng","doi":"10.5731/pdajpst.2024-003020","DOIUrl":null,"url":null,"abstract":"<p><p>Data from cell culture processes contain myriad parameters arriving sequentially in phases which may hold vital information for optimizing process runs and ameliorating manufacturing yield. This study analyzed temporal process data from 249 cell culture production batches of an active pharmaceutical ingredient at Roche's Location A manufacturing facility. The titer manufactured is utilized for Roche's Product X, a prescription drug that can treat adults with cancer. We aim to optimize the upstream production phase titer in Chinese hamster ovary cell manufacturing by identifying the most influential features. A phase-incremental (PI) decision tree method is proposed for feature selection and interaction exploration, being model and loss function agnostic while promoting early feature importance for prediction and process control. In this case study, the method is applied to Ensemble of Gradient Boosting Machines, using adjusted R-squared as the penalized loss function. The result leads to better process understanding and enables earlier control in the manufacturing.</p>","PeriodicalId":19986,"journal":{"name":"PDA Journal of Pharmaceutical Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PDA Journal of Pharmaceutical Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5731/pdajpst.2024-003020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Data from cell culture processes contain myriad parameters arriving sequentially in phases which may hold vital information for optimizing process runs and ameliorating manufacturing yield. This study analyzed temporal process data from 249 cell culture production batches of an active pharmaceutical ingredient at Roche's Location A manufacturing facility. The titer manufactured is utilized for Roche's Product X, a prescription drug that can treat adults with cancer. We aim to optimize the upstream production phase titer in Chinese hamster ovary cell manufacturing by identifying the most influential features. A phase-incremental (PI) decision tree method is proposed for feature selection and interaction exploration, being model and loss function agnostic while promoting early feature importance for prediction and process control. In this case study, the method is applied to Ensemble of Gradient Boosting Machines, using adjusted R-squared as the penalized loss function. The result leads to better process understanding and enables earlier control in the manufacturing.

生物制剂生产中多阶段特征选择与交互的阶段-增量决策树。
来自细胞培养过程的数据包含无数的参数,这些参数依次到达,可能为优化过程运行和提高生产收率提供重要信息。本研究分析了罗氏A工厂249批活性药物成分细胞培养生产的时间过程数据。生产的滴度用于罗氏的X产品,这是一种可以治疗成人癌症的处方药。我们的目的是通过确定影响中国仓鼠卵巢细胞制造的最重要特征来优化上游生产相滴度。提出了一种相位增量(PI)决策树方法用于特征选择和交互探索,该方法与模型和损失函数无关,同时提高了早期特征对预测和过程控制的重要性。在本案例研究中,该方法应用于梯度增强机的集成,使用调整后的r平方作为惩罚损失函数。结果导致更好的过程理解,并使在制造早期控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
34
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信