{"title":"METTL3 regulated by histone lactylation promotes ossification of the ligamentum flavum by enhancing the m6A methylation of BMP2.","authors":"Jiaming Zhou, Rui Wang, Zequn Zhang, Yuan Xue","doi":"10.1186/s10020-025-01173-x","DOIUrl":null,"url":null,"abstract":"<p><p>Ossification of the ligamentum flavum (OLF) is characterized by ligamentum flavum thickening and subsequent thoracic canal stenosis. Emerging evidence has demonstrated the involvement of N6-methyladenosine (m6A) methylation in OLF pathogenesis. This study investigates the regulatory role of METTL3-mediated m6A methylation of BMP2 in OLF progression. Clinical ligamentum flavum tissues were analyzed for m6A levels using dot blot analysis. Osteogenic differentiation was assessed through quantitative real-time PCR (qPCR), alkaline phosphatase staining, alizarin red S staining, and western blot analysis. Mechanistic insights were obtained through methylated RNA immunoprecipitation (MeRIP), RNA immunoprecipitation (RIP), and luciferase reporter assays. The regulatory role of histone lactylation on METTL3 expression was examined using LDHA knockdown, sodium lactate (Nala) treatment, and 2-deoxy-D-glucose (2-DG) administration in OLF cells. Our findings revealed significant upregulation of METTL3 expression and m6A levels in OLF patients. METTL3 was shown to enhance osteogenic differentiation and m6A methylation of BMP2, which was specifically recognized by IGF2BP1. Furthermore, increased histone lactylation was observed in OLF patients, with enrichment in the METTL3 promoter region facilitating its transcriptional activation. LDHA knockdown-mediated inhibition of endogenous lactylation suppressed osteogenic differentiation, a phenotype that was rescued by METTL3 overexpression. In conclusion, this study elucidates that histone lactylation-mediated upregulation of METTL3 promotes OLF progression through IGF2BP1-dependent m6A methylation of BMP2, providing novel insights into potential therapeutic strategies for OLF management.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"118"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938755/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-025-01173-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ossification of the ligamentum flavum (OLF) is characterized by ligamentum flavum thickening and subsequent thoracic canal stenosis. Emerging evidence has demonstrated the involvement of N6-methyladenosine (m6A) methylation in OLF pathogenesis. This study investigates the regulatory role of METTL3-mediated m6A methylation of BMP2 in OLF progression. Clinical ligamentum flavum tissues were analyzed for m6A levels using dot blot analysis. Osteogenic differentiation was assessed through quantitative real-time PCR (qPCR), alkaline phosphatase staining, alizarin red S staining, and western blot analysis. Mechanistic insights were obtained through methylated RNA immunoprecipitation (MeRIP), RNA immunoprecipitation (RIP), and luciferase reporter assays. The regulatory role of histone lactylation on METTL3 expression was examined using LDHA knockdown, sodium lactate (Nala) treatment, and 2-deoxy-D-glucose (2-DG) administration in OLF cells. Our findings revealed significant upregulation of METTL3 expression and m6A levels in OLF patients. METTL3 was shown to enhance osteogenic differentiation and m6A methylation of BMP2, which was specifically recognized by IGF2BP1. Furthermore, increased histone lactylation was observed in OLF patients, with enrichment in the METTL3 promoter region facilitating its transcriptional activation. LDHA knockdown-mediated inhibition of endogenous lactylation suppressed osteogenic differentiation, a phenotype that was rescued by METTL3 overexpression. In conclusion, this study elucidates that histone lactylation-mediated upregulation of METTL3 promotes OLF progression through IGF2BP1-dependent m6A methylation of BMP2, providing novel insights into potential therapeutic strategies for OLF management.
期刊介绍:
Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.