Identification and molecular characterization of missense mutations in orphan G protein-coupled receptor GPR61 occurring in severe obesity.

IF 3.2 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Choi Har Tsang, Alexander De Rosa, Paweł Kozielewicz
{"title":"Identification and molecular characterization of missense mutations in orphan G protein-coupled receptor GPR61 occurring in severe obesity.","authors":"Choi Har Tsang, Alexander De Rosa, Paweł Kozielewicz","doi":"10.1016/j.molpha.2025.100026","DOIUrl":null,"url":null,"abstract":"<p><p>Severe obesity is a complex chronic metabolic condition with a body mass index over 40 and can be caused, for example, by dysregulated G protein-coupled receptors (GPCRs) signaling. The orphan GPCR GPR61 had been linked to the regulation of metabolism and, here, we identify 34 mutations in the GPR61 gene which are present with much higher frequency in severe obesity samples from the UK10K obesity screen compared to the normal population. Furthermore, the cumulative sum of GPR61 mutations was found to be higher compared to the highly mutated and well-established target, melanocortin 4 receptor. Some GPR61 mutations presented an impact on ligand-independent GPR61-induced cAMP production. Specifically, R236C<sup>5.66</sup> compromised G<sub>s</sub> protein activation and altered the pattern of cellular expression. Our data warrant further studies to assess the role of this orphan GPCR in metabolism in greater detail. SIGNIFICANCE STATEMENT: This study identified missense mutations, including previously unknown variants, of the GPR61 gene in severely obese patients. This occurrence was higher than for the well-established obesity target melanocortin 4 receptor. In the in vitro assays, 3 mutations of GPR61, in particular R236C<sup>5.66</sup>, were loss of function because they reduced the constitutive activity of the receptor. The data support the notion that GPR61 can act as a promising target in obesity and its functions should be explored in future studies.</p>","PeriodicalId":18767,"journal":{"name":"Molecular Pharmacology","volume":"107 4","pages":"100026"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.molpha.2025.100026","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Severe obesity is a complex chronic metabolic condition with a body mass index over 40 and can be caused, for example, by dysregulated G protein-coupled receptors (GPCRs) signaling. The orphan GPCR GPR61 had been linked to the regulation of metabolism and, here, we identify 34 mutations in the GPR61 gene which are present with much higher frequency in severe obesity samples from the UK10K obesity screen compared to the normal population. Furthermore, the cumulative sum of GPR61 mutations was found to be higher compared to the highly mutated and well-established target, melanocortin 4 receptor. Some GPR61 mutations presented an impact on ligand-independent GPR61-induced cAMP production. Specifically, R236C5.66 compromised Gs protein activation and altered the pattern of cellular expression. Our data warrant further studies to assess the role of this orphan GPCR in metabolism in greater detail. SIGNIFICANCE STATEMENT: This study identified missense mutations, including previously unknown variants, of the GPR61 gene in severely obese patients. This occurrence was higher than for the well-established obesity target melanocortin 4 receptor. In the in vitro assays, 3 mutations of GPR61, in particular R236C5.66, were loss of function because they reduced the constitutive activity of the receptor. The data support the notion that GPR61 can act as a promising target in obesity and its functions should be explored in future studies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Pharmacology
Molecular Pharmacology 医学-药学
CiteScore
7.20
自引率
2.80%
发文量
50
审稿时长
3-6 weeks
期刊介绍: Molecular Pharmacology publishes findings derived from the application of innovative structural biology, biochemistry, biophysics, physiology, genetics, and molecular biology to basic pharmacological problems that provide mechanistic insights that are broadly important for the fields of pharmacology and toxicology. Relevant topics include: Molecular Signaling / Mechanism of Drug Action Chemical Biology / Drug Discovery Structure of Drug-Receptor Complex Systems Analysis of Drug Action Drug Transport / Metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信