Herpes simplex virus type 1 impairs mucosal-associated invariant T cells.

IF 5.1 1区 生物学 Q1 MICROBIOLOGY
mBio Pub Date : 2025-03-26 DOI:10.1128/mbio.03887-24
Lauren Stern, Zoe Emanuel, Renee Traves, Katherine Willis, Shivam K Purohit, Carolyn Samer, Jeffrey Y W Mak, David P Fairlie, David C Tscharke, Alexandra J Corbett, Allison Abendroth, Barry Slobedman
{"title":"Herpes simplex virus type 1 impairs mucosal-associated invariant T cells.","authors":"Lauren Stern, Zoe Emanuel, Renee Traves, Katherine Willis, Shivam K Purohit, Carolyn Samer, Jeffrey Y W Mak, David P Fairlie, David C Tscharke, Alexandra J Corbett, Allison Abendroth, Barry Slobedman","doi":"10.1128/mbio.03887-24","DOIUrl":null,"url":null,"abstract":"<p><p>Herpes simplex virus type 1 (HSV-1) is a highly successful pathogen that infects mucosal sites and adopts an arsenal of strategies to manipulate host immunity. Mucosal-associated invariant T (MAIT) cells are abundant innate-like T lymphocytes that recognize bacterial and fungal-derived vitamin B-related metabolites presented by major histocompatibility complex class I-related protein 1 (MR1). MAIT cells can also be activated in an MR1-independent manner via cytokine stimulation, predominantly by IL-12 and IL-18. MAIT cell alterations have been identified as being associated with a number of viral infections, but direct interactions between viruses and MAIT cells are poorly understood. It is unknown whether HSV-1 can infect MAIT cells and modulate their functions. Here, we show that HSV-1 can infect primary human MAIT cells, including CD4<sup>±</sup>/CD8<sup>±</sup> and CD56<sup>±</sup> MAIT cell subpopulations. Furthermore, HSV-1 infection profoundly inhibits the functional capacity of MAIT cells to respond to T cell receptor (TCR)-dependent stimulation by the MAIT cell activating ligand 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU) and to cytokine stimulation by IL-12/IL-18. HSV-1-infected MAIT cells display reduced cytotoxic potential, diminished synthesis of effector cytokines, and decreased expression of key cytokine receptors including IL-18R. In addition, MAIT cells exposed to HSV-1-infected fibroblasts but which remained uninfected (viral GFP-negative) also exhibit a suppressed effector response to TCR-dependent stimulation. The functional suppression of HSV-1-exposed MAIT cells was not mediated by a soluble factor within the supernatant, suggesting direct contact of MAIT cells with HSV-1-infected fibroblasts is required. Overall, this study reveals that HSV-1 can infect MAIT cells and substantially impair MAIT cell effector functions.</p><p><strong>Importance: </strong>Mucosal-associated invariant T cells (MAIT cells) are \"unconventional\" immune cells that are becoming increasingly appreciated to play important roles in a variety of viral infections. Herpes simplex virus (HSV) causes significant human disease and is a master manipulator of multiple immune functions, but how this virus may control MAIT cells is poorly understood. We discovered that HSV can infect human MAIT cells and impair their functional capacity and also show that MAIT cells exposed to HSV, but which do not show evidence of infection, are similarly impaired. This study therefore identifies an additional immunomodulatory function of HSV.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0388724"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.03887-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Herpes simplex virus type 1 (HSV-1) is a highly successful pathogen that infects mucosal sites and adopts an arsenal of strategies to manipulate host immunity. Mucosal-associated invariant T (MAIT) cells are abundant innate-like T lymphocytes that recognize bacterial and fungal-derived vitamin B-related metabolites presented by major histocompatibility complex class I-related protein 1 (MR1). MAIT cells can also be activated in an MR1-independent manner via cytokine stimulation, predominantly by IL-12 and IL-18. MAIT cell alterations have been identified as being associated with a number of viral infections, but direct interactions between viruses and MAIT cells are poorly understood. It is unknown whether HSV-1 can infect MAIT cells and modulate their functions. Here, we show that HSV-1 can infect primary human MAIT cells, including CD4±/CD8± and CD56± MAIT cell subpopulations. Furthermore, HSV-1 infection profoundly inhibits the functional capacity of MAIT cells to respond to T cell receptor (TCR)-dependent stimulation by the MAIT cell activating ligand 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU) and to cytokine stimulation by IL-12/IL-18. HSV-1-infected MAIT cells display reduced cytotoxic potential, diminished synthesis of effector cytokines, and decreased expression of key cytokine receptors including IL-18R. In addition, MAIT cells exposed to HSV-1-infected fibroblasts but which remained uninfected (viral GFP-negative) also exhibit a suppressed effector response to TCR-dependent stimulation. The functional suppression of HSV-1-exposed MAIT cells was not mediated by a soluble factor within the supernatant, suggesting direct contact of MAIT cells with HSV-1-infected fibroblasts is required. Overall, this study reveals that HSV-1 can infect MAIT cells and substantially impair MAIT cell effector functions.

Importance: Mucosal-associated invariant T cells (MAIT cells) are "unconventional" immune cells that are becoming increasingly appreciated to play important roles in a variety of viral infections. Herpes simplex virus (HSV) causes significant human disease and is a master manipulator of multiple immune functions, but how this virus may control MAIT cells is poorly understood. We discovered that HSV can infect human MAIT cells and impair their functional capacity and also show that MAIT cells exposed to HSV, but which do not show evidence of infection, are similarly impaired. This study therefore identifies an additional immunomodulatory function of HSV.

求助全文
约1分钟内获得全文 求助全文
来源期刊
mBio
mBio MICROBIOLOGY-
CiteScore
10.50
自引率
3.10%
发文量
762
审稿时长
1 months
期刊介绍: mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信