Distributed Sparse Manifold-Constrained Optimization Algorithm in Linear Discriminant Analysis.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Yuhao Zhang, Xiaoxiang Chen, Manlong Feng, Jingjing Liu
{"title":"Distributed Sparse Manifold-Constrained Optimization Algorithm in Linear Discriminant Analysis.","authors":"Yuhao Zhang, Xiaoxiang Chen, Manlong Feng, Jingjing Liu","doi":"10.3390/jimaging11030081","DOIUrl":null,"url":null,"abstract":"<p><p>In the field of video image processing, high definition is one of the main directions for future development. Faced with the curse of dimensionality caused by the increasingly large amount of ultra-high-definition video data, effective dimensionality reduction techniques have become increasingly important. Linear discriminant analysis (LDA) is a supervised learning dimensionality reduction technique that has been widely used in data preprocessing for dimensionality reduction and video image processing tasks. However, traditional LDA methods are not suitable for the dimensionality reduction and processing of small high-dimensional samples. In order to improve the accuracy and robustness of linear discriminant analysis, this paper proposes a new distributed sparse manifold constraint (DSC) optimization LDA method, called DSCLDA, which introduces L2,0-norm regularization for local sparse feature representation and manifold regularization for global feature constraints. By iterating the hard threshold operator and transforming the original problem into an approximate non-convex sparse optimization problem, the manifold proximal gradient (ManPG) method is used as a distributed iterative solution. Each step of the algorithm has an explicit solution. Simulation experiments have verified the correctness and effectiveness of this method. Compared with several advanced sparse linear discriminant analysis methods, this method effectively improves the average classification accuracy by at least 0.90%.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943265/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11030081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of video image processing, high definition is one of the main directions for future development. Faced with the curse of dimensionality caused by the increasingly large amount of ultra-high-definition video data, effective dimensionality reduction techniques have become increasingly important. Linear discriminant analysis (LDA) is a supervised learning dimensionality reduction technique that has been widely used in data preprocessing for dimensionality reduction and video image processing tasks. However, traditional LDA methods are not suitable for the dimensionality reduction and processing of small high-dimensional samples. In order to improve the accuracy and robustness of linear discriminant analysis, this paper proposes a new distributed sparse manifold constraint (DSC) optimization LDA method, called DSCLDA, which introduces L2,0-norm regularization for local sparse feature representation and manifold regularization for global feature constraints. By iterating the hard threshold operator and transforming the original problem into an approximate non-convex sparse optimization problem, the manifold proximal gradient (ManPG) method is used as a distributed iterative solution. Each step of the algorithm has an explicit solution. Simulation experiments have verified the correctness and effectiveness of this method. Compared with several advanced sparse linear discriminant analysis methods, this method effectively improves the average classification accuracy by at least 0.90%.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信