{"title":"Detection of Chips on the Threaded Part of Cosmetic Glass Bottles.","authors":"Daiki Tomita, Yue Bao","doi":"10.3390/jimaging11030077","DOIUrl":null,"url":null,"abstract":"<p><p>Recycled glass has been the focus of attention owing to its role in reducing plastic waste and further increasing the demand for glass containers. Cosmetics glass bottles require strict quality inspections because of the frequent handling, safety concerns, and other factors. During manufacturing, glass bottles sometimes develop chips on the top surface, rim, or screw threads of the bottle mouth. Conventionally, these chips are visually inspected by inspectors; however, this process is time consuming and prone to inaccuracies. To address these issues, automatic inspection using image processing has been explored. Existing methods, such as dynamic luminance value correction and ring-shaped inspection gates, have limitations: the former relies on visible light, which is strongly affected by natural light, and the latter acquires images directly from above, resulting in low accuracy in detecting chips on the lower part of screw threads. To overcome these challenges, this study proposes a method that combines infrared backlighting and image processing to determine the range of screw threads and detect chips accurately. Experiments were conducted in an experimental environment replicating an actual factory production line. The results confirmed that the detection accuracy of chipping was 99.6% for both good and defective bottles. This approach reduces equipment complexity compared to conventional methods while maintaining high inspection accuracy, contributing to the productivity and quality control of glass bottle manufacturing.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943122/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11030077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recycled glass has been the focus of attention owing to its role in reducing plastic waste and further increasing the demand for glass containers. Cosmetics glass bottles require strict quality inspections because of the frequent handling, safety concerns, and other factors. During manufacturing, glass bottles sometimes develop chips on the top surface, rim, or screw threads of the bottle mouth. Conventionally, these chips are visually inspected by inspectors; however, this process is time consuming and prone to inaccuracies. To address these issues, automatic inspection using image processing has been explored. Existing methods, such as dynamic luminance value correction and ring-shaped inspection gates, have limitations: the former relies on visible light, which is strongly affected by natural light, and the latter acquires images directly from above, resulting in low accuracy in detecting chips on the lower part of screw threads. To overcome these challenges, this study proposes a method that combines infrared backlighting and image processing to determine the range of screw threads and detect chips accurately. Experiments were conducted in an experimental environment replicating an actual factory production line. The results confirmed that the detection accuracy of chipping was 99.6% for both good and defective bottles. This approach reduces equipment complexity compared to conventional methods while maintaining high inspection accuracy, contributing to the productivity and quality control of glass bottle manufacturing.