Qin Ye, Wei Wang, Xuan Zeng, Yuxian Kuang, Bingbing Geng, Song Zhou, Ning Liu
{"title":"Development and Validation of the Digital Health Literacy Questionnaire for Stroke Survivors: Exploratory Sequential Mixed Methods Study.","authors":"Qin Ye, Wei Wang, Xuan Zeng, Yuxian Kuang, Bingbing Geng, Song Zhou, Ning Liu","doi":"10.2196/64591","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In China, there is limited research on digital health literacy (DHL) among patients with stroke. This is mainly due to the lack of validated tools, which hinders the precision and sustainability of our country's digital transformation.</p><p><strong>Objective: </strong>This study aimed to develop and validate a DHL scale specifically for stroke survivors in China.</p><p><strong>Methods: </strong>We used a sequential, exploratory, mixed methods approach to develop a DHL questionnaire for stroke survivors. This study comprised 418 patients with stroke aged 18 years and older. To evaluate the questionnaire's psychometric qualities, we randomly assigned individuals to 2 groups (subsample 1: n=118, subsample 2: n=300). Construct validity was evaluated through internal consistency analysis, exploratory and confirmatory factor analyses, hypothesis testing for structural validity, measurement invariance assessments using the eHealth Literacy Scale, and Rasch analyses to determine the questionnaire's validity and reliability.</p><p><strong>Results: </strong>This study underwent 4 stages of systematic development. The initial pool of items contained 25 items, 5 of which were eliminated after content validity testing; 19 items were subsequently retained through cognitive interviews. After an interitem correlation analysis, 2 more items were excluded, leaving 17 items for exploratory factor analysis. Finally, 2 items were excluded by Rasch analysis, resulting in a final version of the questionnaire containing 15 items. The total score range of the scale was 15-75, with higher scores indicating greater DHL competence. Results showed that principal component analysis confirmed the theoretical structure of the questionnaire (69.212% explained variance). The factor model fit was good with χ<sup>2</sup><sub>4</sub>=1.669; root mean square error of approximation=0.047; Tucker-Lewis Index=0.973; and Comparative Fit Index=0.977. In addition, hypothesis-testing construct validity with the eHealth Literacy Scale revealed a strong correlation (r=0.853). The internal consistency (Cronbach α) coefficient was 0.937. The retest reliability coefficient was 0.941. Rasch analysis demonstrated the item separation index was 3.81 (reliability 0.94) and the individual separation index was 2.91 (reliability 0.89).</p><p><strong>Conclusions: </strong>The DHL Questionnaire for Stroke Survivors is a reliable and valid measure to assess DHL among stroke survivors in China.</p>","PeriodicalId":16337,"journal":{"name":"Journal of Medical Internet Research","volume":"27 ","pages":"e64591"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Internet Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/64591","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: In China, there is limited research on digital health literacy (DHL) among patients with stroke. This is mainly due to the lack of validated tools, which hinders the precision and sustainability of our country's digital transformation.
Objective: This study aimed to develop and validate a DHL scale specifically for stroke survivors in China.
Methods: We used a sequential, exploratory, mixed methods approach to develop a DHL questionnaire for stroke survivors. This study comprised 418 patients with stroke aged 18 years and older. To evaluate the questionnaire's psychometric qualities, we randomly assigned individuals to 2 groups (subsample 1: n=118, subsample 2: n=300). Construct validity was evaluated through internal consistency analysis, exploratory and confirmatory factor analyses, hypothesis testing for structural validity, measurement invariance assessments using the eHealth Literacy Scale, and Rasch analyses to determine the questionnaire's validity and reliability.
Results: This study underwent 4 stages of systematic development. The initial pool of items contained 25 items, 5 of which were eliminated after content validity testing; 19 items were subsequently retained through cognitive interviews. After an interitem correlation analysis, 2 more items were excluded, leaving 17 items for exploratory factor analysis. Finally, 2 items were excluded by Rasch analysis, resulting in a final version of the questionnaire containing 15 items. The total score range of the scale was 15-75, with higher scores indicating greater DHL competence. Results showed that principal component analysis confirmed the theoretical structure of the questionnaire (69.212% explained variance). The factor model fit was good with χ24=1.669; root mean square error of approximation=0.047; Tucker-Lewis Index=0.973; and Comparative Fit Index=0.977. In addition, hypothesis-testing construct validity with the eHealth Literacy Scale revealed a strong correlation (r=0.853). The internal consistency (Cronbach α) coefficient was 0.937. The retest reliability coefficient was 0.941. Rasch analysis demonstrated the item separation index was 3.81 (reliability 0.94) and the individual separation index was 2.91 (reliability 0.89).
Conclusions: The DHL Questionnaire for Stroke Survivors is a reliable and valid measure to assess DHL among stroke survivors in China.
期刊介绍:
The Journal of Medical Internet Research (JMIR) is a highly respected publication in the field of health informatics and health services. With a founding date in 1999, JMIR has been a pioneer in the field for over two decades.
As a leader in the industry, the journal focuses on digital health, data science, health informatics, and emerging technologies for health, medicine, and biomedical research. It is recognized as a top publication in these disciplines, ranking in the first quartile (Q1) by Impact Factor.
Notably, JMIR holds the prestigious position of being ranked #1 on Google Scholar within the "Medical Informatics" discipline.