Psychoacoustic evaluation of different fan designs for an urban air mobility vehicle with distributed propulsion systema).

IF 2.1 2区 物理与天体物理 Q2 ACOUSTICS
Stephen Schade, Roberto Merino-Martinez, Antoine Moreau, Susanne Bartels, Robert Jaron
{"title":"Psychoacoustic evaluation of different fan designs for an urban air mobility vehicle with distributed propulsion systema).","authors":"Stephen Schade, Roberto Merino-Martinez, Antoine Moreau, Susanne Bartels, Robert Jaron","doi":"10.1121/10.0036228","DOIUrl":null,"url":null,"abstract":"<p><p>Distributed propulsion systems are developed to power a new generation of aircraft. However, it is not known yet which noise emissions these propulsion systems produce, which psychoacoustic characteristics such systems exhibit, and how the generated noise is perceived. This paper investigates how fans with fewer stator than rotor blades affect the noise perception of a distributed propulsion system intended for an urban air mobility vehicle, which is equipped with 26 low-speed ducted fans. Three fan designs with different tonal to broadband noise ratio and opposite dominant noise radiation directions are examined. An analytical process is applied to determine the noise emission, propagate the sound through the atmosphere, auralize the flyover signals, and calculate psychoacoustic metrics. A validation and comparison with A320 turbofan engines at takeoff is provided. The results indicate that the distributed propulsion system generates noise signatures with complex directional characteristics and high sharpness. By applying tonal noise reduction mechanisms at source, a significant effective perceived noise level reduction is achieved for the considered fan stages with fewer stator than rotor blades. In addition, tonality, loudness and roughness are reduced well above one noticeable difference compared to a baseline fan and similar or even lower values are achieved than with turbofans.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"157 3","pages":"2150-2167"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0036228","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Distributed propulsion systems are developed to power a new generation of aircraft. However, it is not known yet which noise emissions these propulsion systems produce, which psychoacoustic characteristics such systems exhibit, and how the generated noise is perceived. This paper investigates how fans with fewer stator than rotor blades affect the noise perception of a distributed propulsion system intended for an urban air mobility vehicle, which is equipped with 26 low-speed ducted fans. Three fan designs with different tonal to broadband noise ratio and opposite dominant noise radiation directions are examined. An analytical process is applied to determine the noise emission, propagate the sound through the atmosphere, auralize the flyover signals, and calculate psychoacoustic metrics. A validation and comparison with A320 turbofan engines at takeoff is provided. The results indicate that the distributed propulsion system generates noise signatures with complex directional characteristics and high sharpness. By applying tonal noise reduction mechanisms at source, a significant effective perceived noise level reduction is achieved for the considered fan stages with fewer stator than rotor blades. In addition, tonality, loudness and roughness are reduced well above one noticeable difference compared to a baseline fan and similar or even lower values are achieved than with turbofans.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
16.70%
发文量
1433
审稿时长
4.7 months
期刊介绍: Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信