Uncertainty Quantification in Flow Cytometry Using a Cell Sorter.

IF 2.5 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS
Amudhan Krishnaswamy-Usha, Gregory A Cooksey, Paul N Patrone
{"title":"Uncertainty Quantification in Flow Cytometry Using a Cell Sorter.","authors":"Amudhan Krishnaswamy-Usha, Gregory A Cooksey, Paul N Patrone","doi":"10.1002/cyto.a.24925","DOIUrl":null,"url":null,"abstract":"<p><p>In cytometry, it is difficult to disentangle the contributions of population variance and instrument noise toward total measured variation. Fundamentally, this is due to the fact that one cannot measure the same particle multiple times. We propose a simple experiment that uses a cell sorter to distinguish instrument-specific variation. For a population of beads whose intensities are distributed around a single peak, the sorter is used to collect beads whose measured intensities lie below some threshold. This subset of particles is then remeasured. If the variation in the measured values is only due to the sample, the second set of measurements should also lie entirely below our threshold. Any \"spillover\" is therefore due to instrument-specific effects-we demonstrate how the distribution of the post-sort measurements is sufficient to extract an estimate of the cumulative variability induced by the instrument. A distinguishing feature of our work is that we do not make any assumptions about the sources of said noise. We then show how \"local affine transformations\" let us transfer these estimates to cytometers not equipped with a sorter. We use our analysis to estimate noise for a set of three instruments and two bead types, across a range of sample flow rates. Lastly, we discuss the implications of instrument noise on optimal classification, as well as other applications.</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry Part A","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cyto.a.24925","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In cytometry, it is difficult to disentangle the contributions of population variance and instrument noise toward total measured variation. Fundamentally, this is due to the fact that one cannot measure the same particle multiple times. We propose a simple experiment that uses a cell sorter to distinguish instrument-specific variation. For a population of beads whose intensities are distributed around a single peak, the sorter is used to collect beads whose measured intensities lie below some threshold. This subset of particles is then remeasured. If the variation in the measured values is only due to the sample, the second set of measurements should also lie entirely below our threshold. Any "spillover" is therefore due to instrument-specific effects-we demonstrate how the distribution of the post-sort measurements is sufficient to extract an estimate of the cumulative variability induced by the instrument. A distinguishing feature of our work is that we do not make any assumptions about the sources of said noise. We then show how "local affine transformations" let us transfer these estimates to cytometers not equipped with a sorter. We use our analysis to estimate noise for a set of three instruments and two bead types, across a range of sample flow rates. Lastly, we discuss the implications of instrument noise on optimal classification, as well as other applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cytometry Part A
Cytometry Part A 生物-生化研究方法
CiteScore
8.10
自引率
13.50%
发文量
183
审稿时长
4-8 weeks
期刊介绍: Cytometry Part A, the journal of quantitative single-cell analysis, features original research reports and reviews of innovative scientific studies employing quantitative single-cell measurement, separation, manipulation, and modeling techniques, as well as original articles on mechanisms of molecular and cellular functions obtained by cytometry techniques. The journal welcomes submissions from multiple research fields that fully embrace the study of the cytome: Biomedical Instrumentation Engineering Biophotonics Bioinformatics Cell Biology Computational Biology Data Science Immunology Parasitology Microbiology Neuroscience Cancer Stem Cells Tissue Regeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信