Correction to “Comparing Scientific Machine Learning With Population Pharmacokinetic and Classical Machine Learning Approaches for Prediction of Drug Concentrations”

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY
{"title":"Correction to “Comparing Scientific Machine Learning With Population Pharmacokinetic and Classical Machine Learning Approaches for Prediction of Drug Concentrations”","authors":"","doi":"10.1002/psp4.70024","DOIUrl":null,"url":null,"abstract":"<p>\n <span>Valderrama, D.</span>, <span>Teplytska, O.</span>, <span>Koltermann, L.M.</span>, <span>Trunz, E.</span>, <span>Schmulenson, E.</span>, <span>Fritsch, A.</span>, <span>Jaehde, U.</span> and <span>Fröhlich, H.</span> (<span>2025</span>), <span>Comparing Scientific Machine Learning With Population Pharmacokinetic and Classical Machine Learning Approaches for Prediction of Drug Concentrations</span>. <i>CPT Pharmacometrics Syst Pharmacol.</i> https://doi.org/10.1002/psp4.13313\n </p><p>In the published version of the above article, we noticed an inaccuracy in Figures 2 and 3 (the goodness-of-fit plots) and the corresponding Tables 3 and S3.</p><p>Goodness-of-fit plots illustrate how well a model fits the data by plotting individual predictions (IPRED) (or just predictions) against the actual observations. Upon further discussion, we realized that the IPRED shown for the Multimodal Scientific Machine Learning model were derived from maximum-a posteriori (MAP) individual parameter estimation and those shown for the population pharmacokinetic (PopPK) models were pure simulations, that did not make use of the concentrations in the test data.</p><p>Although we stated this truthfully in our Methods section, we now realize that this comparison can be misleading. We have therefore replaced the goodness-of-fit plots for the PopPK model with more appropriate plots representing IPRED after MAP estimation and added the corresponding metrics to our Tables 3 and S3.</p><p>The conclusions of our article are not affected by this correction.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":"14 4","pages":"807-811"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psp4.70024","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT: Pharmacometrics & Systems Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/psp4.70024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Valderrama, D., Teplytska, O., Koltermann, L.M., Trunz, E., Schmulenson, E., Fritsch, A., Jaehde, U. and Fröhlich, H. (2025), Comparing Scientific Machine Learning With Population Pharmacokinetic and Classical Machine Learning Approaches for Prediction of Drug Concentrations. CPT Pharmacometrics Syst Pharmacol. https://doi.org/10.1002/psp4.13313

In the published version of the above article, we noticed an inaccuracy in Figures 2 and 3 (the goodness-of-fit plots) and the corresponding Tables 3 and S3.

Goodness-of-fit plots illustrate how well a model fits the data by plotting individual predictions (IPRED) (or just predictions) against the actual observations. Upon further discussion, we realized that the IPRED shown for the Multimodal Scientific Machine Learning model were derived from maximum-a posteriori (MAP) individual parameter estimation and those shown for the population pharmacokinetic (PopPK) models were pure simulations, that did not make use of the concentrations in the test data.

Although we stated this truthfully in our Methods section, we now realize that this comparison can be misleading. We have therefore replaced the goodness-of-fit plots for the PopPK model with more appropriate plots representing IPRED after MAP estimation and added the corresponding metrics to our Tables 3 and S3.

The conclusions of our article are not affected by this correction.

Abstract Image

对“比较科学机器学习与群体药代动力学和经典机器学习方法预测药物浓度”的更正。
Valderrama, D, Teplytska, O., Koltermann, l.m., Trunz, E., Schmulenson, E., Fritsch, A., Jaehde, U.和Fröhlich, H.(2025),科学机器学习与群体药代动力学和经典机器学习方法预测药物浓度的比较。CPT药物计量学系统https://doi.org/10.1002/psp4.13313在上述文章的发布版本中,我们注意到图2和3(拟合优度图)以及相应的表3和表S3中有一个不准确的地方。拟合优度图通过绘制个体预测(IPRED)(或仅仅是预测)与实际观察结果的对比,来说明模型与数据的拟合程度。经过进一步讨论,我们意识到多模态科学机器学习模型显示的IPRED来自最大后验(MAP)个体参数估计,而群体药代动力学(PopPK)模型显示的IPRED是纯粹的模拟,没有利用测试数据中的浓度。虽然我们在方法部分如实说明了这一点,但我们现在意识到这种比较可能会产生误导。因此,我们将PopPK模型的拟合优度图替换为表示MAP估计后的IPRED的更合适的图,并将相应的指标添加到表3和S3中。我们文章的结论不受这次更正的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
11.40%
发文量
146
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信