Aliyeh Mehranfar, Jenna Hannonen, Ali Tuna, Maryam Jafarishiadeh, Anniina Kiesilä, Petri Pihko, Pekka Peljo, Kari Laasonen
{"title":"Computational Evaluation of Redox Potentials of Metal Complexes for Aqueous Flow Batteries.","authors":"Aliyeh Mehranfar, Jenna Hannonen, Ali Tuna, Maryam Jafarishiadeh, Anniina Kiesilä, Petri Pihko, Pekka Peljo, Kari Laasonen","doi":"10.1002/cphc.202500046","DOIUrl":null,"url":null,"abstract":"<p><p>Flow batteries are a promising option for large-scale stationary energy storage, but better redox active materials are required. Computational Density Functional Theory (DFT) approach to materials screening can identify the most promising avenues and accelerate the development of the technology. In this work, we focus on metal complexes with functionalized organic ligands. The right redox potential, good chemical stability, and high solubility are the main characters in designing a high-performance aqueous electrolyte. Here, Fe, Ti, Mn, and Ni are studied as central metals of the complexes with two ligand classes containing N- and O- groups. The accuracy of the DFT redox potentials is compared to experiments whenever available. In addition, some cyclic voltammetry measurements were performed for Fe-bipyridine, phenanthroline and terpyridine complexes. We have evaluated the computational redox potentials for ca.180 different metal-ligand combinations. Overall, this work presents a new insight into the design of new electrolytes for aqueous flow batteries.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202500046"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202500046","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Flow batteries are a promising option for large-scale stationary energy storage, but better redox active materials are required. Computational Density Functional Theory (DFT) approach to materials screening can identify the most promising avenues and accelerate the development of the technology. In this work, we focus on metal complexes with functionalized organic ligands. The right redox potential, good chemical stability, and high solubility are the main characters in designing a high-performance aqueous electrolyte. Here, Fe, Ti, Mn, and Ni are studied as central metals of the complexes with two ligand classes containing N- and O- groups. The accuracy of the DFT redox potentials is compared to experiments whenever available. In addition, some cyclic voltammetry measurements were performed for Fe-bipyridine, phenanthroline and terpyridine complexes. We have evaluated the computational redox potentials for ca.180 different metal-ligand combinations. Overall, this work presents a new insight into the design of new electrolytes for aqueous flow batteries.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.