Computational Evaluation of Redox Potentials of Metal Complexes for Aqueous Flow Batteries.

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Aliyeh Mehranfar, Jenna Hannonen, Ali Tuna, Maryam Jafarishiadeh, Anniina Kiesilä, Petri Pihko, Pekka Peljo, Kari Laasonen
{"title":"Computational Evaluation of Redox Potentials of Metal Complexes for Aqueous Flow Batteries.","authors":"Aliyeh Mehranfar, Jenna Hannonen, Ali Tuna, Maryam Jafarishiadeh, Anniina Kiesilä, Petri Pihko, Pekka Peljo, Kari Laasonen","doi":"10.1002/cphc.202500046","DOIUrl":null,"url":null,"abstract":"<p><p>Flow batteries are a promising option for large-scale stationary energy storage, but better redox active materials are required. Computational Density Functional Theory (DFT) approach to materials screening can identify the most promising avenues and accelerate the development of the technology. In this work, we focus on metal complexes with functionalized organic ligands. The right redox potential, good chemical stability, and high solubility are the main characters in designing a high-performance aqueous electrolyte. Here, Fe, Ti, Mn, and Ni are studied as central metals of the complexes with two ligand classes containing N- and O- groups. The accuracy of the DFT redox potentials is compared to experiments whenever available. In addition, some cyclic voltammetry measurements were performed for Fe-bipyridine, phenanthroline and terpyridine complexes. We have evaluated the computational redox potentials for ca.180 different metal-ligand combinations. Overall, this work presents a new insight into the design of new electrolytes for aqueous flow batteries.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202500046"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202500046","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Flow batteries are a promising option for large-scale stationary energy storage, but better redox active materials are required. Computational Density Functional Theory (DFT) approach to materials screening can identify the most promising avenues and accelerate the development of the technology. In this work, we focus on metal complexes with functionalized organic ligands. The right redox potential, good chemical stability, and high solubility are the main characters in designing a high-performance aqueous electrolyte. Here, Fe, Ti, Mn, and Ni are studied as central metals of the complexes with two ligand classes containing N- and O- groups. The accuracy of the DFT redox potentials is compared to experiments whenever available. In addition, some cyclic voltammetry measurements were performed for Fe-bipyridine, phenanthroline and terpyridine complexes. We have evaluated the computational redox potentials for ca.180 different metal-ligand combinations. Overall, this work presents a new insight into the design of new electrolytes for aqueous flow batteries.

水液流电池金属配合物氧化还原电位的计算评价。
液流电池是大规模固定能量存储的一个很有前途的选择,但需要更好的氧化还原活性材料。计算密度泛函理论(DFT)方法用于材料筛选可以确定最有前途的途径,并加速该技术的发展。在这项工作中,我们主要研究功能化有机配体的金属配合物。合适的氧化还原电位、良好的化学稳定性和高的溶解度是设计高性能水电解质的主要特点。本文研究了Fe、Ti、Mn和Ni作为中心金属与含N和O基团的两种配体类的配合物。DFT氧化还原电位的准确性与实验进行了比较。此外,还对铁-联吡啶、菲罗啉和三联吡啶配合物进行了循环伏安测定。我们计算了约180种不同金属配体组合的氧化还原电位。总的来说,这项工作为水液电池的新型电解质设计提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信