Overexpression of βTrCP1 elicits cell death in cisplatin-induced senescent cells.

IF 8.1 1区 生物学 Q1 CELL BIOLOGY
Alejandro Belmonte-Fernández, Joaquín Herrero-Ruíz, M Cristina Limón-Mortés, Carmen Sáez, Miguel Á Japón, Mar Mora-Santos, Francisco Romero
{"title":"Overexpression of βTrCP1 elicits cell death in cisplatin-induced senescent cells.","authors":"Alejandro Belmonte-Fernández, Joaquín Herrero-Ruíz, M Cristina Limón-Mortés, Carmen Sáez, Miguel Á Japón, Mar Mora-Santos, Francisco Romero","doi":"10.1038/s41419-025-07556-6","DOIUrl":null,"url":null,"abstract":"<p><p>Senescence is a non-proliferative cellular state derived from aging or in response to exogenous insults, such as those that cause DNA damage. As a result of cancer treatments like cisplatin, certain tumor cells may undergo senescence. However, rather than being beneficial for patients, this is detrimental because these cells might proliferate again under specific conditions and, more importantly, because they synthesize and secrete molecules that promote the proliferation of nearby cells. Therefore, to achieve complete tumor remission, it is necessary to develop senolytic compounds to eliminate senescent cells. Here, we studied the role of βTrCP1 in cell proliferation and senescence and found that lentiviral overexpression of βTrCP1 induces the death of senescent cells obtained after cisplatin treatment in both two-dimensional cell cultures and tumorspheres. Mechanistically, we demonstrated that overexpression of βTrCP1 triggers proteasome-dependent degradation of p21 CIP1, allowing damaged cells to progress through the cell cycle and consequently die. Furthermore, we identified nucleophosmin 1 (NPM1) as the intermediary molecule involved in the effect of βTrCP1 on p21 CIP1. We determined that increased amounts of βTrCP1 partially retains NPM1 in the nucleoli, preventing it from associating with p21 CIP1, thus leaving it unprotected from degradation by the proteasome. These results have allowed us to discover a potential new target for senolytic drugs, as retaining NPM1 in the nucleoli under senescent conditions induces cell death.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"203"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937513/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07556-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Senescence is a non-proliferative cellular state derived from aging or in response to exogenous insults, such as those that cause DNA damage. As a result of cancer treatments like cisplatin, certain tumor cells may undergo senescence. However, rather than being beneficial for patients, this is detrimental because these cells might proliferate again under specific conditions and, more importantly, because they synthesize and secrete molecules that promote the proliferation of nearby cells. Therefore, to achieve complete tumor remission, it is necessary to develop senolytic compounds to eliminate senescent cells. Here, we studied the role of βTrCP1 in cell proliferation and senescence and found that lentiviral overexpression of βTrCP1 induces the death of senescent cells obtained after cisplatin treatment in both two-dimensional cell cultures and tumorspheres. Mechanistically, we demonstrated that overexpression of βTrCP1 triggers proteasome-dependent degradation of p21 CIP1, allowing damaged cells to progress through the cell cycle and consequently die. Furthermore, we identified nucleophosmin 1 (NPM1) as the intermediary molecule involved in the effect of βTrCP1 on p21 CIP1. We determined that increased amounts of βTrCP1 partially retains NPM1 in the nucleoli, preventing it from associating with p21 CIP1, thus leaving it unprotected from degradation by the proteasome. These results have allowed us to discover a potential new target for senolytic drugs, as retaining NPM1 in the nucleoli under senescent conditions induces cell death.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信