The Protective Effects of Perch Essence Against Muscle Atrophy in Cancer Cachexia and Cisplatin Treatment.

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shu-Lan Yeh, Pei-Yin Chen, Jiunn-Wang Liao, Ruo-Li Huang, Shu-Han Yu, Ling-Ni Chen, Mao-Hsiang Lee, Li-Wen Chen, Haw-Wen Chen, Ya-Chen Yang, Yu-Ling Wu, Kai-Li Liu
{"title":"The Protective Effects of Perch Essence Against Muscle Atrophy in Cancer Cachexia and Cisplatin Treatment.","authors":"Shu-Lan Yeh, Pei-Yin Chen, Jiunn-Wang Liao, Ruo-Li Huang, Shu-Han Yu, Ling-Ni Chen, Mao-Hsiang Lee, Li-Wen Chen, Haw-Wen Chen, Ya-Chen Yang, Yu-Ling Wu, Kai-Li Liu","doi":"10.3390/cimb47030152","DOIUrl":null,"url":null,"abstract":"<p><p>Muscle atrophy, through several pathways including increased protein catabolism, leads to adverse effects in cachexia induced by cancer and chemotherapy. Perch essence (PE) is a perch extract rich in branched-chain amino acids and peptides. The present study initially investigated the effects of PE supplementation on muscle atrophy in a mouse model of cancer cachexia induced by C26 cancer cells and compared these effects with those of tryptone. Compared with the tumor-only group, we found that PE supplementation significantly improved body weight, muscle mass, maximum limb grip strength (MLGS), and myosin heavy chain expression in the muscles of tumor-bearing mice. PE also significantly inhibited the expression of factors related to protein degradation, oxidative stress, and inflammation, while enhancing the expression of antioxidant enzymes in tumor-bearing mice. These effects of PE were associated with an increased expression of phosphorylated Akt and forkhead box protein O1, along with a reduced expression of phosphorylated nuclear factor-κB p65 in the muscles of tumor-bearing mice. Furthermore, PE similarly increased MLGS and attenuated muscle atrophy in mice exposed to cisplatin by inhibiting protein degradation. All the therapeutic effects of PE supplementation mentioned above were generally greater than those of tryptone supplementation. These results suggest the potential of PE in protecting against muscle atrophy induced by tumors or chemotherapy.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 3","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941385/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Issues in Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cimb47030152","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Muscle atrophy, through several pathways including increased protein catabolism, leads to adverse effects in cachexia induced by cancer and chemotherapy. Perch essence (PE) is a perch extract rich in branched-chain amino acids and peptides. The present study initially investigated the effects of PE supplementation on muscle atrophy in a mouse model of cancer cachexia induced by C26 cancer cells and compared these effects with those of tryptone. Compared with the tumor-only group, we found that PE supplementation significantly improved body weight, muscle mass, maximum limb grip strength (MLGS), and myosin heavy chain expression in the muscles of tumor-bearing mice. PE also significantly inhibited the expression of factors related to protein degradation, oxidative stress, and inflammation, while enhancing the expression of antioxidant enzymes in tumor-bearing mice. These effects of PE were associated with an increased expression of phosphorylated Akt and forkhead box protein O1, along with a reduced expression of phosphorylated nuclear factor-κB p65 in the muscles of tumor-bearing mice. Furthermore, PE similarly increased MLGS and attenuated muscle atrophy in mice exposed to cisplatin by inhibiting protein degradation. All the therapeutic effects of PE supplementation mentioned above were generally greater than those of tryptone supplementation. These results suggest the potential of PE in protecting against muscle atrophy induced by tumors or chemotherapy.

鲈鱼精对癌症恶病质肌萎缩的保护作用及顺铂治疗。
肌肉萎缩通过几种途径,包括蛋白质分解代谢增加,导致癌症和化疗引起的恶病质的不良反应。鲈鱼精(PE)是一种富含支链氨基酸和多肽的鲈鱼提取物。本研究初步探讨了补充PE对C26癌细胞引起的癌症恶病质小鼠模型肌肉萎缩的影响,并将其与色氨酸的影响进行了比较。与肿瘤组相比,我们发现补充PE显著改善了荷瘤小鼠的体重、肌肉质量、最大肢体握力(MLGS)和肌肉中肌球蛋白重链的表达。PE还显著抑制了荷瘤小鼠中蛋白质降解、氧化应激和炎症相关因子的表达,同时增强了抗氧化酶的表达。PE的这些作用与荷瘤小鼠肌肉中磷酸化Akt和叉头盒蛋白O1的表达增加以及磷酸化核因子-κB p65的表达减少有关。此外,PE通过抑制蛋白质降解类似地增加了暴露于顺铂小鼠的MLGS并减轻了肌肉萎缩。上述PE的治疗效果均优于色氨酸。这些结果表明,PE在防止肿瘤或化疗引起的肌肉萎缩方面具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Issues in Molecular Biology
Current Issues in Molecular Biology 生物-生化研究方法
CiteScore
2.90
自引率
3.20%
发文量
380
审稿时长
>12 weeks
期刊介绍: Current Issues in Molecular Biology (CIMB) is a peer-reviewed journal publishing review articles and minireviews in all areas of molecular biology and microbiology. Submitted articles are subject to an Article Processing Charge (APC) and are open access immediately upon publication. All manuscripts undergo a peer-review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信