{"title":"Unveiling causal pathways in autoimmune diseases: a multi-omics approach.","authors":"Hao Sha, Weifeng Zhu","doi":"10.1080/08916934.2025.2480594","DOIUrl":null,"url":null,"abstract":"<p><p>Autoimmune diseases (ADs), such as Graves' disease (GD), Hashimoto's thyroiditis (HT), psoriasis, systemic lupus erythematosus (SLE), and type 1 diabetes (T1D), involve complex immune and inflammatory responses. This study employed Mendelian randomization (MR) analysis using genome-wide association study (GWAS) data to examine the causal relationships among 91 circulating inflammatory proteins, 41 cytokines, 211 gut microbiota, and 731 immune cell traits in relation to ADs. Additionally, we integrated mediation and bioinformatics analyses, including protein-protein interaction (PPI) networks, Gene Ontology (GO) enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Subnetwork discovery and key protein identification were performed using the Molecular Complex Detection (MCODE) plugin, alongside colocalization analysis and drug target exploration to identify potential mechanisms. MR analysis identified significant causal relationships between various circulating inflammatory proteins, cytokines, gut microbiota species, immune cells, and ADs, with certain relationships retaining significance after false discovery rate (FDR) correction. Mediation analysis demonstrated that inflammatory proteins mediate pathogenic pathways linking immune cells to psoriasis and gut microbiota to Hashimoto's thyroiditis. PPI and bioinformatics analyses highlighted 22 key proteins involved in ADs, while subnetwork analysis identified 15 central proteins. Fms-related tyrosine kinase 3 ligand (FLT3LG) exhibited strong colocalization evidence. Molecular docking confirmed several proteins as viable drug targets. This comprehensive multi-omics study advances our understanding of ADs, identifies novel therapeutic targets, and offers valuable insights for developing new treatment strategies.</p>","PeriodicalId":8688,"journal":{"name":"Autoimmunity","volume":"58 1","pages":"2480594"},"PeriodicalIF":3.3000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autoimmunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08916934.2025.2480594","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Autoimmune diseases (ADs), such as Graves' disease (GD), Hashimoto's thyroiditis (HT), psoriasis, systemic lupus erythematosus (SLE), and type 1 diabetes (T1D), involve complex immune and inflammatory responses. This study employed Mendelian randomization (MR) analysis using genome-wide association study (GWAS) data to examine the causal relationships among 91 circulating inflammatory proteins, 41 cytokines, 211 gut microbiota, and 731 immune cell traits in relation to ADs. Additionally, we integrated mediation and bioinformatics analyses, including protein-protein interaction (PPI) networks, Gene Ontology (GO) enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Subnetwork discovery and key protein identification were performed using the Molecular Complex Detection (MCODE) plugin, alongside colocalization analysis and drug target exploration to identify potential mechanisms. MR analysis identified significant causal relationships between various circulating inflammatory proteins, cytokines, gut microbiota species, immune cells, and ADs, with certain relationships retaining significance after false discovery rate (FDR) correction. Mediation analysis demonstrated that inflammatory proteins mediate pathogenic pathways linking immune cells to psoriasis and gut microbiota to Hashimoto's thyroiditis. PPI and bioinformatics analyses highlighted 22 key proteins involved in ADs, while subnetwork analysis identified 15 central proteins. Fms-related tyrosine kinase 3 ligand (FLT3LG) exhibited strong colocalization evidence. Molecular docking confirmed several proteins as viable drug targets. This comprehensive multi-omics study advances our understanding of ADs, identifies novel therapeutic targets, and offers valuable insights for developing new treatment strategies.
期刊介绍:
Autoimmunity is an international, peer reviewed journal that publishes articles on cell and molecular immunology, immunogenetics, molecular biology and autoimmunity. Current understanding of immunity and autoimmunity is being furthered by the progress in new molecular sciences that has recently been little short of spectacular. In addition to the basic elements and mechanisms of the immune system, Autoimmunity is interested in the cellular and molecular processes associated with systemic lupus erythematosus, rheumatoid arthritis, Sjogren syndrome, type I diabetes, multiple sclerosis and other systemic and organ-specific autoimmune disorders. The journal reflects the immunology areas where scientific progress is most rapid. It is a valuable tool to basic and translational researchers in cell biology, genetics and molecular biology of immunity and autoimmunity.